कोई पिंड $150\, m$ की ऊँचाई से विराम से गिराया जाता है तथा उसी क्षण किसी अन्य पिंड को $100\, m$ की ऊँचाई से विराम से गिराया जाता है। यदि दोनों प्रकरणों में त्वरण समान है, तो $2\, s$ के पश्चात् इनकी ऊँचाइयों में क्या अंतर है ? समय में परिवर्तन के साथ इस ऊँचाई के अंतर में क्या परिवर्तन होता है ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Initial difference in height $=(150-100) \,m =50 \,m$

Distance travelled by first body in $2 \,s=h_{1}=0+\frac{1}{2}\, g(2)^{2}=2\, g$

Distance travelled by another body in $2 \,s=h_{2}=0+\frac{1}{2} \,g(2)^{2}=2 \,g$

After $2 \,s$, height at which the first body will be $= h _{1}^{\prime}=150-2\, g$

After $2\, s,$ height at which the second body will be $= h _{2}^{\prime}=100-2\, g$

Thus, after $2\, s$, difference in height $=150-2\, g -(100-2\, g )$

$=50 \,m =$ initial difference in height

Thus, difference in height does not vary with time.

Similar Questions

कोई कण त्रिज्या $(r)$ के वृत्ताकार पथ में गमन कर रहा है। अर्धवृत्त पूरा करने के पश्चात् इसका विस्थापन होगा

यदि किसी पिंड का विस्थापन, समय के वर्ग के अनुक्रमानुपाती है, तो वह वस्तु गमन करती है

$v-t$ ग्राफ द्वारा घेरा गया क्षेत्रफल किसी भौतिक राशि को निरूपित करता है जिसका मात्रक है

नीचे दिए गए प्रकरणों में से किसमें, चली गई दूरी तथा विस्थापन के परिमाण समान होते हैं ?

दिए गए $v-t$ ग्राफ $($चित्र$)$ से यह निष्कर्ष निकाल सकते हैं कि पिंड