An ellipse with its minor and major axis parallel to the coordinate axes passes through $(0,0),(1,0)$ and $(0,2)$. One of its foci lies on the $Y$-axis. The eccentricity of the ellipse is
$\sqrt{3}-1$
$\sqrt{5}-2$
$\sqrt{2}-1$
$\frac{\sqrt{3}-1}{2}$
Find the equation of the ellipse whose vertices are $(±13,\,0)$ and foci are $(±5,\,0)$.
In an ellipse, the distance between its foci is $6$ and minor axis is $8$. Then its eccentricity is
Let $'E'$ be the ellipse $\frac{{{x^2}}}{9}$$+$$\frac{{{y^2}}}{4}$ $= 1$ $\& $ $'C' $ be the circle $x^2 + y^2 = 9.$ Let $P$ $\&$ $Q$ be the points $(1 , 2) $ and $(2, 1)$ respectively. Then :
Length of common chord of the ellipse ${\frac{{\left( {x - 2} \right)}}{9}^2} + {\frac{{\left( {y + 2} \right)}}{4}^2} = 1$ and the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$
Let the common tangents to the curves $4\left(x^{2}+y^{2}\right)=$ $9$ and $y ^{2}=4 x$ intersect at the point $Q$. Let an ellipse, centered at the origin $O$, has lengths of semi-minor and semi-major axes equal to $OQ$ and $6$ , respectively. If $e$ and $l$ respectively denote the eccentricity and the length of the latus rectum of this ellipse, then $\frac{l}{ e ^{2}}$ is equal to