An electric field $\overrightarrow{\mathrm{E}}=(2 \mathrm{xi}) \mathrm{NC}^{-1}$ exists in space. $\mathrm{A}$ cube of side $2 \mathrm{~m}$ is placed in the space as per figure given below. The electric flux through the cube is .................. $\mathrm{Nm}^2 / \mathrm{C}$
$13$
$14$
$15$
$16$
A charge $Q\;\mu C$ is placed at the centre of a cube, the flux coming out from any surfaces will be
The circular wire in figure below encircles solenoid in which the magnetic flux is increasing at a constant rate out of the plane of the page. The clockwise emf around the circular loop is $\varepsilon_{0}$. By definition a voltammeter measures the voltage difference between the two points given by $V_{b}-V_{a}=-\int \limits_{a}^{b} E \cdot d s$ We assume that $a$ and $b$ are infinitesimally close to each other. The values of $V_{b}-V_{a}$ along the path $1$ and $V_{a}-V_{b}$ along the path $2$ , respectively are
An arbitrary surface encloses a dipole. What is the electric flux through this surface ?
A few electric field lines for a system of two charges $Q_1$ and $Q_2$ fixed at two different points on the $\mathrm{x}$-axis are shown in the figure. These lines suggest that $Image$
$(A)$ $\left|Q_1\right|>\left|Q_2\right|$
$(B)$ $\left|Q_1\right|<\left|Q_2\right|$
$(C)$ at a finite distance to the left of $\mathrm{Q}_1$ the electric field is zero
$(D)$ at a finite distance to the right of $\mathrm{Q}_2$ the electric field is zero
Two surfaces $S_1$ and $S_2$ are shown in figure. Flux associated with $S_1$ is ${\phi _1}$ and $S_2$ is ${\phi _2}$. Which is correct ?