A few electric field lines for a system of two charges $Q_1$ and $Q_2$ fixed at two different points on the $\mathrm{x}$-axis are shown in the figure. These lines suggest that $Image$
$(A)$ $\left|Q_1\right|>\left|Q_2\right|$
$(B)$ $\left|Q_1\right|<\left|Q_2\right|$
$(C)$ at a finite distance to the left of $\mathrm{Q}_1$ the electric field is zero
$(D)$ at a finite distance to the right of $\mathrm{Q}_2$ the electric field is zero
$(A,D)$
$(B,D)$
$(C,D)$
$(A,B)$
A charge of $1$ coulomb is located at the centre of a sphere of radius $10 \,cm$ and a cube of side $20 \,cm$. The ratio of outgoing flux from the sphere and cube will be
An electrostatic field line leaves at an angle $\alpha$ from point charge $q_{1}$ and connects with point charge $-q_{2}$ at an angle $\beta\left(q_{1}\right.$ and $q_{2}$ are positive) see figure below. If $q_{2}=\frac{3}{2} q_{1}$ and $\alpha=30^{\circ}$, then
Which among the curves shown in Figureb cannot possibly represent electrostatic field lines?
Gauss’s law should be invalid if
Explain the electric field lines and the magnitude of electric field.