An electric field, $\overrightarrow{\mathrm{E}}=\frac{2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}}{\sqrt{6}}$ passes through the surface of $4 \mathrm{~m}^2$ area having unit vector $\hat{\mathrm{n}}=\left(\frac{2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{6}}\right)$. The electric flux for that surface is $\mathrm{Vm}$
$12$
$13$
$15$
$16$
A charged particle $q$ is placed at the centre $O$ of cube of length $L$ $(A\,B\,C\,D\,E\,F\,G\,H)$. Another same charge $q$ is placed at a distance $L$ from $O$.Then the electric flux through $BGFC$ is
Consider the charge configuration and spherical Gaussian surface as shown in the figure. When calculating the flux of the electric field over the spherical surface the electric field will be due to
Draw electric field by positive charge.
A long cylindrical shell carries positive surface charge $\sigma$ in the upper half and negative surface charge $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in : (figures are schematic and not drawn to scale)
An electric line of force in the $xy$ plane is given by equation ${x^2} + {y^2} = 1$. A particle with unit positive charge, initially at rest at the point $x = 1,\;y = 0$ in the $xy$ plane