A long cylindrical shell carries positive surface charge $\sigma$ in the upper half and negative surface charge $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in : (figures are schematic and not drawn to scale)
How does the electric field lines depend on area ?
${q_1},\;{q_2},\;{q_3}$ and ${q_4}$ are point charges located at points as shown in the figure and $S$ is a spherical Gaussian surface of radius $R$. Which of the following is true according to the Gauss’s law
In $1959$ Lyttleton and Bondi suggested that the expansion of the Universe could be explained if matter carried a net charge. Suppose that the Universe is made up of hydrogen atoms with a number density $N$, which is maintained a constant. Let the charge on the proton be :
${e_p}{\rm{ }} = - {\rm{ }}\left( {1{\rm{ }} + {\rm{ }}y} \right)e$ where $\mathrm{e}$ is the electronic charge.
$(a)$ Find the critical value of $y$ such that expansion may start.
$(b)$ Show that the velocity of expansion is proportional to the distance from the centre.
A charge $Q\;\mu C$ is placed at the centre of a cube, the flux coming out from any surfaces will be
Find out the surface charge density at the intersection of point $x =3\, m$ plane and $x$ -axis, in the region of uniform line charge of $8\, nC / m$ lying along the $z$ -axis in free space.