A charged particle $q$ is placed at the centre $O$ of cube of length $L$ $(A\,B\,C\,D\,E\,F\,G\,H)$. Another same charge $q$ is placed at a distance $L$ from $O$.Then the electric flux through $BGFC$ is
$q/4\pi {\varepsilon_{0}}L$
zero
$q/2\pi {\varepsilon_{0}}L$
$q/3\pi {\varepsilon_{0}}L$
The electric field components in Figure are $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0,$ in which $\alpha=800 \;N / C\, m ^{1 / 2} .$ Calculate
$(a)$ the flux through the cube, and
$(b)$ the charge within the cube. Assume that $a=0.1 \;m$
Draw electric field lines of positive charge.
An infinitely long thin non-conducting wire is parallel to the $z$-axis and carries a uniform line charge density $\lambda$. It pierces a thin non-conducting spherical shell of radius $R$ in such a way that the arc $PQ$ subtends an angle $120^{\circ}$ at the centre $O$ of the spherical shell, as shown in the figure. The permittivity of free space is $\epsilon_0$. Which of the following statements is (are) true?
$(A)$ The electric flux through the shell is $\sqrt{3} R \lambda / \epsilon_0$
$(B)$ The z-component of the electric field is zero at all the points on the surface of the shell
$(C)$ The electric flux through the shell is $\sqrt{2} R \lambda / \epsilon_0$
$(D)$ The electric field is normal to the surface of the shell at all points
In a cuboid of dimension $2 L \times 2 L \times L$, a charge $q$ is placed at the centre of the surface ' $S$ ' having area of $4 L ^2$. The flux through the opposite surface to ' $S$ ' is given by
The spatial distribution of the electric field due to charges $(A, B)$ is shown in figure. Which one of the following statements is correct