એક કમાન અર્ધઉપવલયાકારની છે તે $8$ મી પહોળી અને કેન્દ્ર આગળ $2$ મી ઊંચી છે, તો તેના એક છેડેથી $1.5$ મી અંતરે આવેલા બિંદુ આગળ કમાનની ઊંચાઈ શોધો.
since the height and width of the are from the centre is $2\, m$ and $8\, m$ respectively, it is clear that the length of the major axis is $8\, m ,$ while the length of the semi-minor axis is $2 \,m$ The origin of the coordinate plane is taken as the centre of the ellipse, while the major axis is taken along the $x-$ axis. Hence, the semi-ellipse can be diagrammatically represented as
The equation of the semi-ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 y \geq 0,$ where a is the semimajor axis
Accordingly, $2 a=8 \Rightarrow a=4$ $b=2$
Therefore, the equation of the semi-ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1, y \geq 0$ ....... $(1)$
Let A be a point on the major axis such that $AB =1.5 \,m$
Draw $AC \perp OB$.
$OA =(4-1.5)\, m =2.5 \,m$
The $x-$ coordinate of point $C$ is $2.5$
On substituting the value of $x$ with $2.5$ in equation $(1),$ we obtain
$\frac{(2.5)^{2}}{16}+\frac{y^{2}}{4}=1$
$\Rightarrow \frac{6.25}{16}+\frac{y^{2}}{4}=1$
$\Rightarrow y^{2}=4\left(1-\frac{6.25}{16}\right)$
$\Rightarrow y^{2}=4\left(\frac{9.27}{16}\right)$
$\Rightarrow y^{2}=2.4375$
$\Rightarrow y=1.56 $ (approx.)
$\therefore AC =1.56 \,m$
Thus, the height of the arch at a point $1.5 \,m$ from one end is approximately $1.56 \,m$
જો ઉપવલયની નાભીઓ વચ્ચેનું અંતર તેની નાભીલંબની લંબાઈ કરતાં અડધું હોય તો ઉપવલયની ઉત્કેન્દ્ર્તા ............... થાય
જો $a$ અને $c$ એ વાસ્તવિક સંખ્યાઓ છે અને ઉપવલય $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ ના વર્તુળ $x^2 + y^2 = 9a^2$ માં ચાર ભિન્ન બિંદુઓ સામાન્ય હોય તો ....
જે ઉપવલયની નાભિઓ $(-1, 0)$ અને $(7, 0)$ અને ઉત્કેન્દ્રતા $1/2$ હોય, તે ઉપવલય પરના બિંદુનું પ્રચલ સ્વરૂપ :
અનુપ્રસ્થ અક્ષોની લંબાઈ $2\ sin\ \theta$ ધરાવતો અતિવલય, એ ઉપવલય $3x^2 + 4y^2 = 12$ સાથે સમનાભિ હોય, તો તેનું સમીકરણ.....
ઉપવલય $\frac{{{x^2}}}{{36}}\,\, + \;\,\frac{{{y^2}}}{{49}}\,\, = \,\,1$ ના નાભિલંબની લંબાઈ મેળવો.