An arch is in the form of a semi-cllipse. It is $8 \,m$ wide and $2 \,m$ high at the centre. Find the height of the arch at a point $1.5\, m$ from one end.
since the height and width of the are from the centre is $2\, m$ and $8\, m$ respectively, it is clear that the length of the major axis is $8\, m ,$ while the length of the semi-minor axis is $2 \,m$ The origin of the coordinate plane is taken as the centre of the ellipse, while the major axis is taken along the $x-$ axis. Hence, the semi-ellipse can be diagrammatically represented as
The equation of the semi-ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 y \geq 0,$ where a is the semimajor axis
Accordingly, $2 a=8 \Rightarrow a=4$ $b=2$
Therefore, the equation of the semi-ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1, y \geq 0$ ....... $(1)$
Let A be a point on the major axis such that $AB =1.5 \,m$
Draw $AC \perp OB$.
$OA =(4-1.5)\, m =2.5 \,m$
The $x-$ coordinate of point $C$ is $2.5$
On substituting the value of $x$ with $2.5$ in equation $(1),$ we obtain
$\frac{(2.5)^{2}}{16}+\frac{y^{2}}{4}=1$
$\Rightarrow \frac{6.25}{16}+\frac{y^{2}}{4}=1$
$\Rightarrow y^{2}=4\left(1-\frac{6.25}{16}\right)$
$\Rightarrow y^{2}=4\left(\frac{9.27}{16}\right)$
$\Rightarrow y^{2}=2.4375$
$\Rightarrow y=1.56 $ (approx.)
$\therefore AC =1.56 \,m$
Thus, the height of the arch at a point $1.5 \,m$ from one end is approximately $1.56 \,m$
Let the length of the latus rectum of an ellipse with its major axis long $x -$ axis and center at the origin, be $8$. If the distance between the foci of this ellipse is equal to the length of the length of its minor axis, then which one of the following points lies on it?
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :
Find the equation for the ellipse that satisfies the given conditions : Vertices $(\pm 5,\,0),$ foci $(\pm 4,\,0)$
Let $L$ is distance between two parallel normals of , $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\,\,\,a > b$ then maximum value of $L$ is
If the tangents on the ellipse $4x^2 + y^2 = 8$ at the points $(1, 2)$ and $(a, b)$ are perpendicular to each other, then $a^2$ is equal to