એક ચક્ર એક મિનિટમાં ${360^\circ }$ પરિભ્રમણ કરે છે, તો તે એક સેકન્ડમાં કેટલા રેડિયન માપ જેટલું ફરશે ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Number of revolutions made by the wheel in $1$ minute $=360$

$\therefore$ Number of revolutions made by the wheel in $1$ second $=\frac{360}{60}=6$

In one complete revolution, the wheel turns an angle of $2 \pi$ radian.

Hence, in $6$ complete revolutions, it will turn an angle of $6 \times 2 \pi$ radian,

i.e., $12 \pi$ radian

Thus, in one second, the wheel turns an angle of $12 \pi$ radian.

Similar Questions

સાબિત કરો કે : $\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$

$\frac{{2\sin \theta \,\tan \theta (1 - \tan \theta ) + 2\sin \theta {{\sec }^2}\theta }}{{{{(1 + \tan \theta )}^2}}} = $

સાબિત કરો કે : $\cot ^{2} \frac{\pi}{6}+\cos ec \,\frac{5 \pi}{6}+3 \tan ^{2}\, \frac{\pi}{6}=6$

જો $\tan \theta - \cot \theta = a$ અને $\sin \theta + \cos \theta = b,$ તો ${({b^2} - 1)^2}({a^2} + 4)$ મેળવો. 

જો $x{\sin ^3}\alpha + y{\cos ^3}\alpha = \sin \alpha \cos \alpha $ અને $x\sin \alpha - y\cos \alpha = 0,$ તો ${x^2} + {y^2} = $