Two vectors $\overrightarrow{ A }$ and $\overrightarrow{ B }$ have equal magnitudes. If magnitude of $\overrightarrow{ A }+\overrightarrow{ B }$ is equal to two times the magnitude of $\overrightarrow{ A }-\overrightarrow{ B }$, then the angle between $\overrightarrow{ A }$ and $\overrightarrow{ B }$ will be .......................
How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant
The vectors $\overrightarrow A $ and $\overrightarrow B$ lie in a plane. Another vector $\overrightarrow C $ lies outside this plane. The resultant $\overrightarrow A + \overrightarrow B + \overrightarrow C$ of these three vectors
The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is