$k$ જેટલા બળ અચળાંકવાળી એક હલકી સ્થિતિસ્થાપક દોરીના છેડે દળવાળો પથ્થર બાંધેલો છે. સામાન્ય સ્થિતિમાં આ દોરીની લંબાઈ $L$ છે. આ દોરીનો બીજો છેડો $P$ બિંદુએ જડિત કરેલી ખીલી સાથે બાંધેલો છે. પ્રારંભમાં પથ્થર $P$ બિંદુના સમક્ષિતિજ લેવલ પર છે. હવે આ પથ્થરને $P$ બિંદુએથી મુક્ત કરવામાં આવે છે.

$(a)$ પથ્થર જે બિંદુએ પહેલીવાર ક્ષણ પૂરતો સ્થિર થાય તે બિંદુનું ટોચના બિંદુથી અંતર $y$ શોધો.

$(b)$ અત્રે પથ્થરને મુક્ત કર્યા બાદ તેનો મહત્તમ વેગ કેટલો હશે ?

$(c)$ ગતિપથ પરના નિમ્નતમ સ્થાને પહોંચ્યા બાદ ગતિનો પ્રકાર કેવો હશે ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider the diagram, the stone is dropped from point $P$.

$(a)$ Stone is in free fall upto length L. After that elasticity of string exerted force for $SHM$. Suppose, stone is at rest at instantaneous distance ' $\mathrm{y}$ '.

Loss in potential energy of stone $=$ Gain in elastic potential energy in string.

$m g y=\frac{1}{2} k(y-\mathrm{L})^{2}$

$\therefore m g y=\frac{1}{2} k y^{2}-k y \mathrm{~L}+\frac{1}{2} k \mathrm{~L}^{2}$

$\Rightarrow \frac{1}{2} k y^{2}-(k \mathrm{~L}+m g) y+\frac{1}{2} k \mathrm{~L}^{2}=0$

$y=\frac{(k \mathrm{~L}+m g) \pm \sqrt{(k \mathrm{~L}+m g)^{2}-k^{2} \mathrm{~L}^{2}}}{k}$

$\therefore y=\frac{(k \mathrm{~L}+m g) \pm \sqrt{2 m g k \mathrm{~L}+m^{2} g^{2}}}{k}$

$\therefore y=\frac{(k \mathrm{~L}+m g)+\sqrt{2 m g k \mathrm{~L}+m^{2} g^{2}}}{k}$

890-s135

Similar Questions

તારને જ્યારે $100\,N$ અને $120\,N$ નું તણાવબળ લગાડવામાં આવે છે ત્યારે તેની લંબાઈ અનુક્રમે $l_1$ અને $l_2$ થાય છે. જો $10 l_2=11 l_1$, હોય તો, તારની મૂળ લંબાઈ $\frac{1}{x} l_1$ મળે છે. $x$ નું મૂલ્ય $.......$ છે.

  • [JEE MAIN 2023]

આપેલ તંત્ર માટે $W_2$ તારમાં વિકૃતિ કેટલી થાય?

$1.05\, m $ લંબાઈ અને અવગણ્ય દળ ધરાવતાં એક સળિયાને આકૃતિમાં દર્શાવ્યા મુજબ બે તાર વડે બંને છેડેથી લટકાવેલ છે. તાર $A $ સ્ટીલ અને તાર $B$ ઍલ્યુમિનિયમનો છે. તાર $A$ અને તાર $B$ ના આડછેદનું ક્ષેત્રફળ અનુક્રમે $1.0\, mm$ અને $2.0\, mm$ છે. સળિયા પર કયા બિંદુએ $m $ દળ લટકાવવામાં આવે કે જેથી સ્ટીલ અને ઍલ્યુમિનિયમના બંને તારમાં $(a)$ સમાન પ્રતિબળ $(b)$ સમાન વિકૃતિ ઉદ્ભવે ?

સમાન દ્રવ્ય અને સમાન લંબાઇ ધરાવતા તારના વ્યાસનો ગુણોત્તર $1:2$ છે,તેમનાં પર સમાન વજન લગાવતા, લંબાઇમાં થતો વધારાનો ગુણોત્તર કેટલો થાય?

$2.0\, m$ લંબાઈના ત્રણ તાર વડે $15\, kg$ દળના દઢ સળિયાને સમાન રીતે લટકાવેલ છે. ત્રણ પૈકી છેડાના બે તાર તાંબાના અને વચ્ચેનો તાર લોખંડનો છે. જો ત્રણેય તાર સમાન તણાવ અનુભવતા હોય, તો તેમના વ્યાસના ગુણોત્તર શોધો.