स्प्रिंग स्थिरांक $k$ वाली एक स्प्रिंग को काटकर दो हिस्से इस प्रकार किये जाते हैं कि एक हिस्सा दूसरे से लम्बाई में दुगुना है। तब लम्बे हिस्से का स्प्रिंग स्थिरांक होगा
$(2/3)k$
$(3/2)k$
$3k$
$6k$
चित्रानुसार एक द्रव्यमान $M$ दो स्प्रिंगों $A$ तथा $B$ से चित्रानुसार लटकाया गया है। स्प्रिंगों के बल नियतांक क्रमषः $K_1$ तथा $K_2$ हैं। दोनों स्प्रिंगों की लम्बाई में कुल वृद्धि है
एक द्रव्यमान $M$ एक नगण्य द्रव्यमान की स्प्रिंग से लटक रहा है। स्प्रिंग को थोड़ा सा खींच कर छोड़ने पर द्रव्यमान आवर्तकाल $T$ से दोलन करने लगता है यदि द्रव्यमान में वृद्धि $m$ कर दी जाये तो आवर्तकाल $\frac{{5T}}{3}$ हो जाता है। तो $\frac{m}{M}$ का मान है
घर्षणहीन क्षैतिज तल पर पड़ी हुई $k$ बल स्थिरांक की द्रव्यमान रहित स्प्रिंग के एक सिरे से $m$ द्रव्यमान का कण जुड़ा हुआ है। इस स्प्रिंग का दूसरा सिरा बद्ध है। यह कण अपनी साम्यावस्था से समय $t=0$ पर प्रारम्भिक क्षैतिज वेग $u_0$ से गतिमान हो रहा है। जब कण की गति $0.5 u_0$ होती है, यह एक दृढ़ दीवार से प्रत्यास्थ संघट्ट करता है। इस संघट्ट के बाद -
$(A)$ जब कण अपनी साम्यावस्था से लौटता है इसकी गति $u_0$ होती है।
$(B)$ जब कण अपनी साम्यावस्था से पहली बार गुजरता है वह समय $t=\pi \sqrt{\frac{m}{k}}$ है।
$(C)$ जब स्प्रिंग से सम्पीड़न अधिकतम होता है वह समय $t =\frac{4 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
$(D)$ जब कण अपनी साम्यावस्था से दूसरी बार गुजरता है वह समय $t =\frac{5 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
एक स्प्रिंग से जुड़ा हुआ $1 \;kg$ का एक गुटका $1 \;Hz$ की आवृत्ति से एक घर्षणहीन क्षैतिज मेज पर दोलन करता है। इसी तरह की दो समान्तर स्प्रिंगों से एक $8 \;kg$ का गुटका जोड़कर उसी मेज पर दोलन कराते हैं। $8 \;kg$ के गुटके की दोलन आवृत्ति होगी $\dots \; Hz$
निम्न चित्र में प्रदर्शित दोनों स्प्रिंग एक समान हैं, यदि $A = 4kg$ स्प्रिंग की लम्बाई में वृद्धि $1 \,cm$ है। यदि $B = 6kg$ है तो इसके द्वारा लम्बाई में वृद्धि ..... $cm$ होगी