A spherical conductor of radius $2m$ is charged to a potential of $120\, V$. It is now placed inside another hollow spherical conductor of radius $6m$. Calculate the potential to which the bigger sphere would be raised......$V$
$20$
$60$
$80$
$40$
Two charges $5 \times 10^{-8} \;C$ and $-3 \times 10^{-8}\; C$ are located $16\; cm$ apart. At what point $(s)$ on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
Electric charges of $+10\,\mu\, C, +5\,\mu\, C, -3\,\mu\, C$ and $+8\,\mu\, C$ are placed at the corners of a square of side$\sqrt 2\,m$ . The potential at the centre of the square is
A hemispherical bowl of mass $m$ is uniformly charged with charge density $'\sigma '$ . Electric potential due to charge distribution at a point $'A'$ is (which lies at centre of radius as shown).
Six point charges are placed at the vertices of a regular hexagon of side $a$ as shown. If $E$ represents electric field and $V$ represents electric potential at $O$, then
Figure shows three circular arcs, each of radius $R$ and total charge as indicated. The net electric potential at the centre of curvature is