Two charges $5 \times 10^{-8} \;C$ and $-3 \times 10^{-8}\; C$ are located $16\; cm$ apart. At what point $(s)$ on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

There are two charges,

$q_{1}=5 \times 10^{-8} \,C$

$q_{2}=-3 \times 10^{-8} \,C$

Distance between the two charges, $d =16 \,cm =0.16 \,m$

Consider a point $P$ on the line joining the two charges, as shown in the given figure.

$r=$ Distance of point $P$ from charge $q_{1}$ Let the electric potential $(V)$ at point $P$ be zero. Potential at point $P$ is the sum of potentials caused by charges $q_{1}$ and $q_{2}$ respectively.

Where, $\therefore V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)} \dots(i)$

$\varepsilon_{0}=$ Permittivity of free space For $V =0,$ equation $(i)$ reduces to $0=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)}$

$\Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)}$

$\Rightarrow \frac{q_{1}}{r}=-\frac{q_{2}}{(d-r)}$

$\Rightarrow \frac{5 \times 10^{-8}}{r}=-\frac{\left(-3 \times 10^{-8}\right)}{(0.16-r)}$

$\Rightarrow 5(0.16-r)=3 r$

$\Rightarrow 0.8=8 r \Rightarrow r=0.1 \,m =10 \,cm$

Therefore, the potential is zero at a distance of $10 \;cm$ from the positive charge between the charges. Suppose point $P$ is outside the system of two charges at a distance s from the negative charge, where potential is zero, as shown in the following figure.

For this arrangement, potential is given by,

Where, $V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)} \ldots (ii)$

$\varepsilon_{0}=$ Permittivity of free space For $V=0,$ equation (ii) reduces to $0=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)}$

$\Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)}$

$\Rightarrow \frac{q_{1}}{s}=-\frac{q_{2}}{(s-d)}$

$\Rightarrow \frac{5 \times 10^{-8}}{s}=-\frac{\left(-3 \times 10^{-8}\right)}{(s-0.16)}$

$\Rightarrow 5(s-0.16)=3 \,s$

$\Rightarrow 0.8=2 \,s \Rightarrow s=0.4 \,m =40\, cm$

Therefore, the potential is zero at a distance of $40 \,cm$ from the positive charge outside the system of charges.

898-s11

Similar Questions

A hollow metal sphere of radius $5\, cm$ is charged so that the potential on its surface is $10\, V$. The potential at the centre of the sphere is

  • [IIT 1983]

Define electric potential and explain it. Write its $\mathrm{SI}$ unit and give its other units.

Point charge ${q_1} = 2\,\mu C$ and ${q_2} = - 1\,\mu C$ are kept at points $x = 0$ and $x = 6$ respectively. Electrical potential will be zero at points

Assume that an electric field $\overrightarrow E  = 30{x^2}\hat i$ exists in space. Then the potential difference $V_A -V_O$, where $V_O$ is the potential at the origin and $V_A$ the potential at $x = 2\, m$ is

Two tiny spheres carrying charges $1.5 \;\mu\, C$ and $2.5\; \mu\, C$ are located $30 \;cm$ apart. Find the potential and electric field

$(a)$ at the mid-point of the line joining the two charges, and

$(b)$ at a point $10\; cm$ from this midpoint in a plane normal to the line and passing through the mid-point.