Electric charges of $+10\,\mu\, C, +5\,\mu\, C, -3\,\mu\, C$ and $+8\,\mu\, C$ are placed at the corners of a square of side$\sqrt 2\,m$ . The potential at the centre of the square is
$1.8\,V$
$1.8 \times {10^6}\,V$
$1.8 \times {10^5}\,V$
$1.8 \times {10^4}\,V$
Three concentric metal shells $A, B$ and $C$ of respective radii $a, b$ and $c (a < b < c)$ have surface charge densities $+\sigma,-\sigma$ and $+\sigma$ respectively. The potential of shell $B$ is
Assertion: Electron move away from a region of higher potential to a region of lower potential.
Reason: An electron has a negative charge.
A small conducting sphere of radius $r$ is lying concentrically inside a bigger hollow conducting sphere of radius $R.$ The bigger and smaller spheres are charged with $Q$ and $q (Q > q)$ and are insulated from each other. The potential difference between the spheres will be
Charges of $ + \frac{{10}}{3} \times {10^{ - 9}}C$ are placed at each of the four corners of a square of side $8\,cm$. The potential at the intersection of the diagonals is
Consider two conducting spheres of radii ${{\rm{R}}_1}$ and ${{\rm{R}}_2}$ with $\left( {{{\rm{R}}_1} > {{\rm{R}}_2}} \right)$. If the two are at the same potential, the larger sphere has more charge than the smaller sphere. State whether the charge density of the smaller sphere is more or less than that of the larger one.