$\rho (r)\,\, = \,\,{\rho _0}\left( {\frac{5}{4}\, - \,\,\frac{r}{R}} \right)$ એ વિદ્યુતભારની ઘનતા સાથે બદલાતું ગોળીય સંમિત વિદ્યુતભારનું વિતરણ આપે છે. જે $r = R$, અને $\rho (r)\,\, = \,\,0$ માટે $r > R$ જ્યાં $r$ એ ઉગમબિંદુથી અંતર છે. ઉગમબિંદુથી $r$ અંતરે $(r < R)$ વિદ્યુતક્ષેત્ર ....... દ્વારા આપવામાં આવે છે.
$\frac{{{\rho _0}r}}{{3{\varepsilon _0}}}\,\left( {\frac{5}{4}\, - \,\frac{r}{R}} \right)$
$\frac{{4\pi {\rho _0}r}}{{3{\varepsilon _0}}}\,\left( {\frac{5}{3}\,\, - \,\,\frac{r}{R}} \right)$
$\frac{{{\rho _0}r}}{{4{\varepsilon _0}}}\,\,\left( {\frac{5}{3}\,\, - \,\,\frac{r}{R}} \right)$
$\frac{{4{\rho _0}r}}{{3{\varepsilon _0}}}\,\,\left( {\frac{5}{4}\,\, - \,\,\frac{r}{R}} \right)$
ગોસના નિયમનો ઉપયોગ કર્યા સિવાય વિધુતભારની સમાન રેખીય ઘનતા $\lambda$ ધરાવતા લાંબા પાતળા તારને લીધે ઉદભવતા વિધુતક્ષેત્રનું સૂત્ર મેળવો. (સૂચન : કુલંબના નિયમનો સીધો ઉપયોગ કરો અને જરૂરી સંકલનની ગણતરી કરો.)
નીચે આપેલા સમાન રીતે વિધુતભારિત ઉદ્ભવતાં વિધુતક્ષેત્રનું સૂત્ર મેળવો.
$(i)$ અનંત સમતલ વડે
$(ii)$ પાતળી ગોળાકાર કવચને લીધે તેની બહારના બિંદુએ
$(iii)$ પાતળી ગોળાકાર કવચના લીધે તેની અંદરના બિંદુએ
$R$ ત્રિજ્યાની ગોળીય કવચ પર $Q$ વિધુતભાર વિતરીત છે. તે $q$ વિધુતભાર પર $F$ બળ લગાડે છે. જો $q$ વિધુતભાર ગોળીય કવચ થી $r$ અંતરે હોય તો બળ $F$ માટે કયું વિધાન સાચું છે.
$R$ ત્રિજયા ધરાવતા વિદ્યુતભારીત વાહક ગોળીય કવચના કેન્દ્રથી $\frac{{3R}}{2}$ અંતરે વિદ્યુતક્ષેત્ર $E\; V/m$ છે. તેના કેન્દ્રથી $\frac{R}{2}$ અંતરે વિદ્યુતક્ષેત્ર કેટલું થાય?
ગોસના નિયમના ઉપયોગો જણાવો.