ધારો કે એક નક્કર ગોળાની ત્રિજ્યા $R$ અને તેના પરનો વિદ્યુતભાર $Q$ છે. આ ગોળાનું વિદ્યુત ઘનતા વિતરણ $\rho( r )=\frac{ Q }{\pi R ^{4}} \cdot r$ સૂત્ર વડે અપાય છે. આ ગોળાની અંદર ગોળાના કેન્દ્રથી $r _{1}$ અંતરે આવેલા બિંદુ $P$ આગળ વિદ્યુતક્ષેત્રનું મૂલ્ય કેટલું થાય?
દરેક પ્લેટની સપાટીનું ક્ષેત્રફળ $\mathrm{S}$ હોય તેવી બે સમાન વાહક પ્લેટો $\alpha $ અને $\beta $ જડિત કરેલી છે અને તેમના પર અનુક્રમે $-\mathrm{q}$ અને $\mathrm{q}$ વિધુતભાર છે. જ્યાં $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ એક ત્રીજી પ્લેટ $\gamma $ ને આ બે પ્લેટોની વચ્ચે મૂકવામાં આવે છે તે મુક્ત રીતે ગતિ કરી શકે છે તથા તેના પર $\mathrm{q}$ વિધુતભાર છે જે આકૃતિમાં દર્શાવ્યું છે. ત્રીજી પ્લેટને મુક્ત કરતાં તે $\beta $ પ્લેટ સાથે અથડાય છે. એવું ધારવામાં આવે છે કે અથડામણ સ્થિતિસ્થાપક છે અને $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભારને વહેંચાવા માટે અથડામણો વચ્ચેનો પૂરતો સમય છે.
$(a)$ અથડામણ પહેલા $\gamma $ પ્લેટ પર લાગતું વિધુતક્ષેત્ર શોધો.
$(b)$ અથડામણ બાદ $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભાર શોધો.
$(c)$ અથડામણ પછી $\gamma $ પ્લેટનો $\mathrm{B}$ પ્લેટથી $\mathrm{d}$ અંતરે હોય ત્યારનો વેગ શોધો.
ગાઉસના પ્રમેય પરથી કુલંબનો નિયમ સમજાવો.
બે મોટી, પાતળી ધાતુની પ્લેટો એકબીજાની નજીક અને સમાંતર છે. તેમની અંદરની બાજુઓ પર વિરૂદ્ધ ચિહ્નો ધરાવતી અને $17.0\times 10^{-22}\; C/m^2$ મૂલ્યની વિદ્યુતભારની પૃષ્ઠઘનતા છે. $(a)$ પ્રથમ પ્લેટની બહારના વિસ્તારમાં $(b)$ બીજી પ્લેટની બહારના વિસ્તારમાં અને $(c)$ બંને પ્લેટોની વચ્ચેના વિસ્તારમાં વિદ્યુતક્ષેત્ર $E$ શોધો.
$(a)$ દર્શાવો કે સ્થિરવિધુતક્ષેત્રના લંબ ઘટકનું, વિધુતભારિત સપાટીની એકબાજુથી બીજી બાજુ સુધી અસતતપણું
$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{0}}$
દ્વારા અપાય છે. જ્યાં, ${\hat n}$ તે બિંદુએ સપાટીને લંબ એકમ સદિશ છે. $\sigma $ તે બિંદુએ વિધુતભારની પૃષ્ઠ ઘનતા છે. ( ${\hat n}$ ની દિશા બાજુ $1$ થી $2$ બાજુ તરફ છે. ) આ પરથી દર્શવો કે સુવાહકની તરત બહાર વિધુતક્ષેત્ર ${\sigma \hat n/{\varepsilon _0}}$ છે.
$(b)$ દર્શાવો કે સ્થિતવિદ્યુત ક્ષેત્રનો સ્પર્શીય $(Tangential)$ ઘટક, વિદ્યુતભારિત સપાટીની એક બાજુથી બીજી બાજુ સુધી સતત હોય છે. [ સૂચનઃ $(a)$ માટે ગોસના નિયમનો ઉપયોગ કરો. $(b)$ માટે સ્થિત વિદ્યુત ક્ષેત્ર વડે બંધ ગાળા પર કરેલું કાર્ય શૂન્ય છે તે હકીકતનો ઉપયોગ કરો. ]