વિધુતભારિત પાતળી ગોળીય કવચ વડે મળતું વિધુતક્ષેત્ર, કવચના કેન્દ્રથી કેવી રીતે આધાર રાખે છે તે આકૃતિથી સમજાવો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store
897-s177g

Similar Questions

ધારો કે એક નક્કર ગોળાની ત્રિજ્યા $R$ અને તેના પરનો વિદ્યુતભાર $Q$ છે. આ ગોળાનું વિદ્યુત ઘનતા વિતરણ $\rho( r )=\frac{ Q }{\pi R ^{4}} \cdot r$ સૂત્ર વડે અપાય છે. આ ગોળાની અંદર ગોળાના કેન્દ્રથી $r _{1}$ અંતરે આવેલા બિંદુ $P$ આગળ વિદ્યુતક્ષેત્રનું મૂલ્ય કેટલું થાય?

  • [AIEEE 2009]

દરેક પ્લેટની સપાટીનું ક્ષેત્રફળ $\mathrm{S}$ હોય તેવી બે સમાન વાહક પ્લેટો $\alpha $ અને $\beta $ જડિત કરેલી છે અને તેમના પર અનુક્રમે  $-\mathrm{q}$  અને  $\mathrm{q}$ વિધુતભાર છે. જ્યાં $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ એક ત્રીજી પ્લેટ $\gamma $ ને આ બે પ્લેટોની વચ્ચે મૂકવામાં આવે છે તે મુક્ત રીતે ગતિ કરી શકે છે તથા તેના પર $\mathrm{q}$ વિધુતભાર છે જે આકૃતિમાં દર્શાવ્યું છે. ત્રીજી પ્લેટને મુક્ત કરતાં તે $\beta $  પ્લેટ સાથે અથડાય છે. એવું ધારવામાં આવે છે કે અથડામણ સ્થિતિસ્થાપક છે અને $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભારને વહેંચાવા માટે અથડામણો વચ્ચેનો પૂરતો સમય છે.

$(a)$ અથડામણ પહેલા $\gamma $ પ્લેટ પર લાગતું વિધુતક્ષેત્ર શોધો. 

$(b)$ અથડામણ બાદ $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભાર શોધો. 

$(c)$ અથડામણ પછી $\gamma $ પ્લેટનો $\mathrm{B}$ પ્લેટથી $\mathrm{d}$ અંતરે હોય ત્યારનો વેગ શોધો.

ગાઉસના પ્રમેય પરથી કુલંબનો નિયમ સમજાવો.

બે મોટી, પાતળી ધાતુની પ્લેટો એકબીજાની નજીક અને સમાંતર છે. તેમની અંદરની બાજુઓ પર  વિરૂદ્ધ ચિહ્નો ધરાવતી અને $17.0\times 10^{-22}\; C/m^2$ મૂલ્યની વિદ્યુતભારની પૃષ્ઠઘનતા છે. $(a)$ પ્રથમ પ્લેટની બહારના વિસ્તારમાં $(b)$ બીજી પ્લેટની બહારના વિસ્તારમાં અને $(c)$ બંને પ્લેટોની વચ્ચેના વિસ્તારમાં વિદ્યુતક્ષેત્ર $E$ શોધો.

$(a)$ દર્શાવો કે સ્થિરવિધુતક્ષેત્રના લંબ ઘટકનું, વિધુતભારિત સપાટીની એકબાજુથી બીજી બાજુ સુધી અસતતપણું 

$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{0}}$

દ્વારા અપાય છે. જ્યાં, ${\hat n}$ તે બિંદુએ સપાટીને લંબ એકમ સદિશ છે. $\sigma $ તે બિંદુએ વિધુતભારની પૃષ્ઠ ઘનતા છે. ( ${\hat n}$ ની દિશા બાજુ $1$ થી $2$ બાજુ  તરફ છે. ) આ પરથી દર્શવો કે સુવાહકની તરત બહાર વિધુતક્ષેત્ર ${\sigma \hat n/{\varepsilon _0}}$ છે. 

$(b)$ દર્શાવો કે સ્થિતવિદ્યુત ક્ષેત્રનો સ્પર્શીય $(Tangential)$ ઘટક, વિદ્યુતભારિત સપાટીની એક બાજુથી બીજી બાજુ સુધી સતત હોય છે. [ સૂચનઃ $(a)$ માટે ગોસના નિયમનો ઉપયોગ કરો. $(b)$ માટે સ્થિત વિદ્યુત ક્ષેત્ર વડે બંધ ગાળા પર કરેલું કાર્ય શૂન્ય છે તે હકીકતનો ઉપયોગ કરો. ]