A singly ionized magnesium atom $(A=24)$ ion is accelerated to kinetic energy $5\,keV$ and is projected perpendicularly into a magnetic field $B$ of the magnitude $0.5\,T$. The radius of path formed will be___________ $cm$

  • [JEE MAIN 2022]
  • A

    $9$

  • B

    $3$

  • C

    $7$

  • D

    $10$

Similar Questions

An $e^-$ is moving parallel to a long current carrying wire as shown. Force on electron is

If a charged particle goes unaccelerated in a region containing electric and magnetic fields

An electron is projected with velocity $v_0$ in a uniform electric field $E$ perpendicular to the field. Again it is projetced with velocity $v_0$ perpendicular to a uniform magnetic field $B/$ If $r_1$ is initial radius of curvature just after entering in the electric field and $r_2$ is initial radius of curvature just after entering in magnetic field then the ratio $r_1:r_2$ is equal to 

An electron and a proton are moving on straight parallel paths with same velocity. They enter a semi-infinite region of uniform magnetic field perpendicular to the velocity. Which of the following statement$(s)$ is/are true?

$(A)$ They will never come out of the magnetic field region.

$(B)$ They will come out travelling along parallel paths.

$(C)$ They will come out at the same time.

$(D)$ They will come out at different times.

  • [IIT 2011]

Two charged particle $A$ and $B$ each of charge $+e$ and masses $12$ $amu$ and $13$ $amu$ respectively follow a circular trajectory in chamber $X$ after the velocity selector as shown in the figure. Both particles enter the velocity selector with speed $1.5 \times 10^6 \,ms^{-1}.$ A uniform magnetic field of strength $1.0$ $T$ is maintained within the chamber $X$ and in the velocity selector.