A satellite is in an elliptic orbit around the earth with aphelion of $6R$ and perihelion of $2R$ where $R = 6400 \,km$ is the radius of the earth. Find eccentricity of the orbit. Find the velocity of the satellite at apogee and perigee. What should be done if this satellite has to be transferred to a circular orbit of radius $6R$ ? $($ $G = 6.67 \times 10^{-11}\,SI$ $\rm {unit}$ and $M = 6 \times 10^{24}\,kg$$)$
Given, $r_{p}=$ radius of perihelion $=2 \mathrm{R}$
$r_{a}=$ radius of aphelion $=6 \mathrm{R}$
Hence, we can write,
$r_{a}=a(1+e)=6 \mathrm{R}$
$r_{p}=a(1-e)=2 \mathrm{R}$
Solving equ. $(i)$ and $(ii)$, we get
eccentricity, $e=\frac{1}{2}$
Angular momentum remains unchanged.
$\therefore m v_{p} r_{p}=m v_{a} r_{a}$
$\therefore \frac{v_{a}}{v_{p}}=\frac{r_{p}}{r_{a}}=\frac{2 \mathrm{R}}{6 \mathrm{R}}=\frac{1}{3}$
Energy is same at perigee and apogee,
$\frac{1}{2} m v_{p}^{2}-\frac{\mathrm{GM} m}{r_{p}}=\frac{1}{2} m v_{a}^{2}-\frac{\mathrm{GM} m}{r_{a}}$
$\therefore v_{p}^{2}\left(1-\frac{1}{9}\right)=-2 \mathrm{GM}\left(\frac{1}{r_{a}}-\frac{1}{r_{p}}\right)=2 \mathrm{GM}\left(\frac{1}{r_{p}}-\frac{1}{r_{a}}\right)\left(\right.$ By putting $\left.v_{a}=\frac{v_{p}}{3}\right)$
${p}=\frac{\left[2 \mathrm{GM}\left(\frac{1}{r_{p}}-\frac{1}{r_{a}}\right)\right]^{\frac{1}{2}}}{\left[1-\left(\frac{v_{a}}{v_{p}}\right)^{2}\right]^{\frac{1}{2}}}=\left[\frac{\frac{2 \mathrm{GM}}{\mathrm{R}}\left(\frac{1}{2}-\frac{1}{6}\right)}{\left(1-\frac{1}{9}\right)}\right]^{\frac{1}{2}}$ $=\left(\frac{\frac{2}{3} \mathrm{GM}}{\frac{8}{9} \mathrm{R}}\right)^{\frac{1}{2}}=\sqrt{\frac{3}{4} \frac{\mathrm{GM}}{\mathrm{R}}}=6.85 \mathrm{~km} / \mathrm{s}$
$v_{p}=6.85 \mathrm{~km} / \mathrm{s}, v_{a}=2.28 \mathrm{~km} / \mathrm{s}$
A planet moving along an elliptical orbit is closest to the sun at a distance $r_1$ and farthest away at a distance of $r_2$. If $v_1$ and $v_2$ are the linear velocities at these points respectively, then the ratio $\frac{v_1}{v_2}$ is
The period of revolution of planet $A$ around the sun is $8$ times that of $B$. The distance of $A$ from the sun is how many times greater than that of $B$ from the sun
The largest and the shortest distance of the earth from the sun are ${r_1}$ and ${r_2}$, its distance from the sun when it is at the perpendicular to the major axis of the orbit drawn from the sun
A satellite moves in a circle around the earth. The radius of this circle is equal to one half of the radius of the moon’s orbit. The satellite completes one revolution in
Which of the following statements is true for the planets orbiting around the sun ?