A rational number between $\sqrt{2}$ and $\sqrt{3}$ is

  • A

    $1.5$

  • B

    $\frac{\sqrt{2}+\sqrt{3}}{2}$

  • C

    $\frac{\sqrt{2}-\sqrt{3}}{2}$

  • D

    $1.8$

Similar Questions

Which type of number is number $\frac{22}{7}$ $-$ rational or irrational $?$

If $\sqrt{2}=1.414, \sqrt{3}=1.732,$ then find the value of $\frac{4}{3 \cdot \sqrt{3}-2 \cdot \sqrt{2}}+\frac{3}{3 \cdot \sqrt{3}+2 \cdot \sqrt{2}}$

Represent $\sqrt{5.6}$ on the number line.

Simplify the following:

$(\sqrt{3}-\sqrt{2})^{2}$

Rationalise the denominator of the following:

$\frac{16}{\sqrt{41}-5}$