A rational number between $\sqrt{2}$ and $\sqrt{3}$ is
$1.5$
$\frac{\sqrt{2}+\sqrt{3}}{2}$
$\frac{\sqrt{2}-\sqrt{3}}{2}$
$1.8$
Which type of number is number $\frac{22}{7}$ $-$ rational or irrational $?$
If $\sqrt{2}=1.414, \sqrt{3}=1.732,$ then find the value of $\frac{4}{3 \cdot \sqrt{3}-2 \cdot \sqrt{2}}+\frac{3}{3 \cdot \sqrt{3}+2 \cdot \sqrt{2}}$
Represent $\sqrt{5.6}$ on the number line.
Simplify the following:
$(\sqrt{3}-\sqrt{2})^{2}$
Rationalise the denominator of the following:
$\frac{16}{\sqrt{41}-5}$