A positively charged particle moving due east enters a region of uniform magnetic field directed vertically upwards. The particle will
Get deflected vertically upwards
Move in a circular orbit with its speed increased
Move in a circular orbit with its speed unchanged
Continue to move due east
An electron and a proton are moving on straight parallel paths with same velocity. They enter a semi-infinite region of uniform magnetic field perpendicular to the velocity. Which of the following statement$(s)$ is/are true?
$(A)$ They will never come out of the magnetic field region.
$(B)$ They will come out travelling along parallel paths.
$(C)$ They will come out at the same time.
$(D)$ They will come out at different times.
An electron moves with speed $2 \times {10^5}\,m/s$ along the positive $x$-direction in the presence of a magnetic induction $B = \hat i + 4\hat j - 3\hat k$ (in $Tesla$) The magnitude of the force experienced by the electron in Newton's is (charge on the electron =$1.6 \times {10^{ - 19}}C)$
At $t$ = $0$, a positively charged particle of mass $m$ is projected from the origin with velocity $u_0$ at an angle $37^o $ from the $x-$axis as shown in the figure. A constant magnetic field ${\vec B_0} = {B_0}\hat j$ is present in space. After a time interval $t_0$ velocity of particle may be:-
An electron with energy $0.1\,ke\,V$ moves at right angle to the earth's magnetic field of $1 \times 10^{-4}\,Wbm ^{-2}$. The frequency of revolution of the electron will be. (Take mass of electron $=9.0 \times 10^{-31}\,kg$ )
Two ions of masses $4 \,{amu}$ and $16\, amu$ have charges $+2 {e}$ and $+3 {e}$ respectively. These ions pass through the region of constant perpendicular magnetic field. The kinetic energy of both ions is same. Then :