A positive charge particle of $100 \,mg$ is thrown in opposite direction to a uniform electric field of strength $1 \times 10^{5} \,NC ^{-1}$. If the charge on the particle is $40 \,\mu C$ and the initial velocity is $200 \,ms ^{-1}$, how much distance (in $m$) it will travel before coming to the rest momentarily
$1$
$5$
$10$
$0.5$
A small point mass carrying some positive charge on it, is released from the edge of a table. There is a uniform electric field in this region in the horizontal direction. Which of the following options then correctly describe the trajectory of the mass ? (Curves are drawn schematically and are not to scale).
A uniform electric field of $10\,N / C$ is created between two parallel charged plates (as shown in figure). An electron enters the field symmetrically between the plates with a kinetic energy $0.5\,eV$. The length of each plate is $10\,cm$. The angle $(\theta)$ of deviation of the path of electron as it comes out of the field is $.........$(in degree).
Cathode rays travelling from east to west enter into region of electric field directed towards north to south in the plane of paper. The deflection of cathode rays is towards
An inclined plane making an angle of $30^{\circ}$ with the horizontal is placed in a uniform horizontal electric field $200 \, \frac{ N }{ C }$ as shown in the figure. A body of mass $1\, kg$ and charge $5\, mC$ is allowed to slide down from rest at a height of $1\, m$. If the coefficient of friction is $0.2,$ find the time (in $s$ )taken by the body to reach the bottom. $\left[ g =9.8 \,m / s ^{2}, \sin 30^{\circ}=\frac{1}{2}\right.$; $\left.\cos 30^{\circ}=\frac{\sqrt{3}}{2}\right]$
A body having specific charge $8\,\mu {C} / {g}$ is resting on a frictionless plane at a distance $10\, {cm}$ from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of $100 \,{V} / {m}$ is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be $....\, S.$