A body having specific charge $8\,\mu {C} / {g}$ is resting on a frictionless plane at a distance $10\, {cm}$ from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of $100 \,{V} / {m}$ is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be $....\, S.$
$1$
$5$
$7$
$8$
A particle of mass $m$ and charge $(-q)$ enters the region between the two charged plates initially moving along $x$ -axis with speed $v_{x}$ (like particle $1$ in Figure). The length of plate is $L$ and an uniform electric field $E$ is maintained between the plates. Show that the vertical deflection of the particle at the far edge of the plate is $q E L^{2} /\left(2 m v_{x}^{2}\right)$
Compare this motion with motion of a projectile in gravitational field
An electron is projected in the direction of electric field. Just after projection of electron
Cathode rays travelling from east to west enter into region of electric field directed towards north to south in the plane of paper. The deflection of cathode rays is towards
An electron is released from the bottom plate $A$ as shown in the figure $(E = 10^4\, N/C)$. The velocity of the electron when it reaches plate $B$ will be nearly equal to
An electron falls through a distance of $1.5\; cm$ in a uniform electric field of magnitude $2.0 \times 10^{4} \;N C ^{-1} \text {[Figure (a)]} .$ The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance [Figure $(b)] .$ Compute the time of fall in each case. Contrast the situation with that of 'free fall under gravity'.