A physical quantity $p$ is described by the relation $p\, = a^{1/2}\, b^2\, c^3\, d^{-4}$
If the relative errors in the measurement of $a, b, c$ and $d$ respectively, are $2\% , 1\%, 3\%$ and $5\%$, then the relative error in $P$ will be ........... $\%$
$8$
$12$
$32$
$25$
The International Avogadro Coordination project created the world's most perfect sphere using Silicon in its crystalline form. The diameter of the sphere is $9.4 \,cm$ with an uncertainty of $0.2 \,nm$. The atoms in the crystals are packed in cubes of side $a$. The side is measured with a relative error of $2 \times 10^{-9}$, and each cube has $8$ atoms in it. Then, the relative error in the mass of the sphere is closest to (assume molar mass of Silicon and Avogadro's number to be known precisely)
In order to determine the Young's Modulus of a wire of radius $0.2\, cm$ (measured using a scale of least count $=0.001\, cm )$ and length $1 \,m$ (measured using a scale of least count $=1\, mm$ ), a weight of mass $1\, kg$ (measured using a scale of least count $=1 \,g$ ) was hanged to get the elongation of $0.5\, cm$ (measured using a scale of least count $0.001\, cm$ ). What will be the fractional error in the value of Young's Modulus determined by this experiment? (in $\%$)
Explain uncertainty or error in given measurement by suitable example.
The density of a cube is measured by measuring its mass and length of its sides. If the maximum error in the measurement of mass and length are $4\%$ and $3\%$ respectively, the maximum error in the measurement of density will be ........ $\%$
Two resistors of resistances $R_{1}=100 \pm 3$ $ohm$ and $R_{2}=200 \pm 4$ $ohm$ are connected $(a)$ in series, $(b)$ in parallel. Find the equivalent resistance of the $(a)$ series combination, $(b)$ parallel combination. Use for $(a)$ the relation $R=R_{1}+R_{2}$ and for $(b)$ $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ and $\frac{\Delta R^{\prime}}{R^{\prime 2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$