Two resistors of resistances $R_{1}=100 \pm 3$ $ohm$ and $R_{2}=200 \pm 4$ $ohm$ are connected $(a)$ in series, $(b)$ in parallel. Find the equivalent resistance of the $(a)$ series combination, $(b)$ parallel combination. Use for $(a)$ the relation $R=R_{1}+R_{2}$ and for $(b)$ $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ and $\frac{\Delta R^{\prime}}{R^{\prime 2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ The equivalent resistance of serles combination

$R=R_{1}+R_{2}=(100 \pm 3)$ $ohm$ $+(200 \pm 4)$ $ohm$

$=300 \pm 7 \text { ohm. }$

$(b)$ The equivalentl resistance of parallel combination

$R^{\prime}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{200}{3}=66.7$ $ohm$

Then, from $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

we get,

$\frac{\Delta R^{\prime}}{R^{2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$

$\Delta R^{\prime}=\left(R^{2}\right) \frac{\Delta R_{1}}{R_{1}^{2}}+\left(R^{2}\right) \frac{\Delta R_{2}}{R_{2}^{2}}$

$=\left(\frac{66.7}{100}\right)^{2} 3+\left(\frac{66.7}{200}\right)^{2} 4$

$=1.8$

Then, $R^{\prime}=66.7 \pm 1.8$ $ohm$

(Here, $\Delta R$ is expresed as $1.8$ instead of $2$ to keep in confirmity with the rules of stgnificant figures.

Similar Questions

The resistance $R =\frac{ V }{ I },$ where $V =(50 \pm 2) \;V$ and $I=(20 \pm 0.2)\;A.$ The percentage error in $R$ is $x\%$. The value of $x$ to the nearest integer is .........

  • [JEE MAIN 2021]

Find the relative error in $Z,$ if $Z=\frac{A^{4} B^{1 / 3}}{ C D^{3 / 2}}$

The percentage error in measurement of mass and speed are $3\%$ and $2\%$ then error in kinetic energy will be .......... $\%$

What is estimation of error ? Write method for estimation.

The maximum percentage errors in the measurement of mass (M), radius (R) and angular velocity $(\omega)$ of a ring are $2 \%, 1 \%$ and $1 \%$ respectively, then find the maximum percenta? error in the measurement of its rotational kinetic energy $\left(K=\frac{1}{2} I \omega^{2}\right)$