एक कण जिसका द्रव्यमान $m$ तथा आवेश $q$ है किसी एकसमान विधुत क्षेत्र $E$ में स्थिर है फिर इसे मुक्त कर दिया जाये तो $y$ दूरी चलने के पश्चात इसके द्वारा प्राप्त गतिज ऊर्जा होगी:
$qE{y^2}$
$q{E^2}y$
$qEy$
${q^2}Ey$
एक $\alpha$-कण एवं एक प्रोट्रोन, समान विभवान्तर के द्वारा विश्रामावस्था से त्वरित किए जाते हैं। इन दोनों कणों के द्वारा प्राप्त किए गए रेखीय संवेगों का अनुपात है:
एक इलेक्ट्रॉन निम्न विभव क्षेत्र ${V_1}$ से उच्च विभव क्षेत्र ${V_2}$ में प्रवेश करता है। इसका वेग
कुल आवेश $q$ तथा त्रिज्या $3 a$ का एक एकसमान आवेशित वलय $xy$-समतल में मूलबिंदु पर केन्द्रित रखा है। एक बिन्दु आवेश $q$ इस वलय की तरफ $Z$-अक्ष पर चल रहा है। इसकी $z =4 a$ पर चाल $v$ है। मूलबिंदु को पार करने के लिए $v$ का न्यूनतम मान होगा ।
इस प्रश्न में दो कथन हैं, कथन$-1$ तथा कथन$-2$। इन कथनों के बाद दिये गये चार विकल्पों में से उस विकल्प का चयन कीजिए जो इन प्रकथनों का सर्वोत्तम वर्णन करता है।
कथन$-1 :$ बिन्दु $P$ से, बिन्दु $Q$, तक एक आवेशित कण की गति से, कण पर एक स्थिर विद्युत क्षेत्र द्वारा परिणामी किया गया कार्य, बिन्दु $P$ से बिन्दु $Q$ तक जोड़े जाने वाले पथ से स्वतंत्र है।
कथन$-2 :$ एक संरक्षी बल द्वारा एक पिण्ड पर, एक बन्द लूप में गति करने से किया गया परिणामी कार्य शून्य है।
यदि $q$ धनात्मक है तथा इसे कम विभव वाले स्थान से अधिक विभव वाले स्थान की ओर गति करवाते हैं, तो इसकी स्थितिज ऊर्जा