A parallel plate capacitor is formed by two plates each of area $30 \pi\, cm ^{2}$ separated by $1\, mm$. A material of dielectric strength $3.6 \times 10^{7} \,Vm ^{-1}$ is filled between the plates. If the maximum charge that can be stored on the capacitor without causing any dielectric breakdown is $7 \times 10^{-6}\, C$, the value of dielectric constant of the material is

$\left\{ Use : \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} Nm ^{2} C ^{-2}\right\}$

  • [JEE MAIN 2022]
  • A

    $1.66$

  • B

    $1.75$

  • C

    $2.25$

  • D

    $2.33$

Similar Questions

A parallel plate capacitor with width $4\,cm$, length $8\,cm$ and separation between the plates of $4\,mm$ is connected to a battery of $20\,V$. A dielectric slab of dielectric constant $5$ having length $1\,cm$, width $4\,cm$ and thickness $4\,mm$ is inserted between the plates of parallel plate capacitor. The electrostatic energy of this system will be......... $\in_{0}\,J$. (Where $\epsilon_{0}$ is the permittivity of free space)

  • [JEE MAIN 2022]

Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle $\theta$ with each other. When suspended in water the angle remains the same. If density of the material of the sphere is $1.5 \mathrm{~g} / \mathrm{cc}$, the dielectric constant of water will be

(Take density of water $=1 \mathrm{~g} / \mathrm{cc}$ )

  • [JEE MAIN 2024]

In a parallel plate capacitor with air between the plates, each plate has an area of $6 \times 10^{-3}\; m ^{2}$ and the distance between the plates is $3 \;mm$ the capacitance of the capacitor is $17.71 \;pF$. If this capacitor is connected to a $100\; V$ supply, $3\; mm$ thick mica sheet (of dielectric constant $=6$ ) were inserted between the plates,

$(a)$ while the voltage supply remained connected.

$(b)$ after the supply was disconnected.

The expression for the capacity of the capacitor formed by compound dielectric placed between the plates of a parallel plate capacitor as shown in figure, will be (area of plate $ = A$)

A parallel plate capacitor with air as medium between the plates has a capacitance of $10\,\mu F$. The area of capacitor is divided into two equal halves and filled with two media as shown in the figure having dielectric constant ${k_1} = 2$and ${k_2} = 4$. The capacitance of the system will now be.......$\mu F$