Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle $\theta$ with each other. When suspended in water the angle remains the same. If density of the material of the sphere is $1.5 \mathrm{~g} / \mathrm{cc}$, the dielectric constant of water will be
(Take density of water $=1 \mathrm{~g} / \mathrm{cc}$ )
$4$
$8$
$7$
$3$
A parallel plate capacitor of plate area $A$ and plate separation $d$ is charged to potential $V$ and then the battery is disconnected. A slab of dielectric constant $k$ is then inserted between the plates of the capacitors so as to fill the space between the plates. If $Q,\;E$ and $W$ denote respectively, the magnitude of charge on each plate, the electric field between the plates (after the slab is inserted) and work done on the system in question in the process of inserting the slab, then state incorrect relation from the following
An uncharged parallel plate capacitor having a dielectric of constant $K$ is connected to a similar air-cored parallel capacitor charged to a potential $V$. The two share the charge and the common potential is $V'$. The dielectric constant $K$ is
Due to which the surface charge density arises on the surface of a dielectric slab, when it is placed in a uniform electric field ?
A parallel plate capacitor with air between the plate has a capacitance of $15 pF$. The separation between the plate becomes twice and the space between them is filled with a medium of dielectric constant $3.5.$ Then the capacitance becomes $\frac{ x }{4}\,pF$.The value of $x$ is $............$
A parallel plate capacitor with air between the plates has a capacitance of $8 \;pF \left(1 \;pF =10^{-12} \;F \right) .$ What will be the capacitance (in $pF$) if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant $6 ?$