The expression for the capacity of the capacitor formed by compound dielectric placed between the plates of a parallel plate capacitor as shown in figure, will be (area of plate $ = A$)
$\frac{{{\varepsilon _0}A}}{{\left( {\frac{{{d_1}}}{{{K_1}}} + \frac{{{d_2}}}{{{K_2}}} + \frac{{{d_3}}}{{{K_3}}}} \right)}}$
$\frac{{{\varepsilon _0}A}}{{\left( {\frac{{{d_1} + {d_2} + {d_3}}}{{{K_1} + {K_2} + {K_3}}}} \right)}}$
$\frac{{{\varepsilon _0}A({K_1}{K_2}{K_3})}}{{{d_1}{d_2}{d_3}}}$
${\varepsilon _0}\left( {\frac{{A{K_1}}}{{{d_1}}} + \frac{{A{K_2}}}{{{d_2}}} + \frac{{A{K_3}}}{{{d_3}}}} \right)$
Figure given below shows two identical parallel plate capacitors connected to a battery with switch $S$ closed. The switch is now opened and the free space between the plate of capacitors is filled with a dielectric of dielectric constant $3$. What will be the ratio of total electrostatic energy stored in both capacitors before and after the introduction of the dielectric
Consider a parallel plate capacitor of $10\,\mu \,F$ (micro-farad) with air filled in the gap between the plates. Now one half of the space between the plates is filled with a dielectric of dielectric constant $4$, as shown in the figure. The capacity of the capacitor changes to.......$\mu \,F$
Two identical charged spheres are suspended by string of equal lengths. The string make an angle of $37^{\circ}$ with each other. When suspended in a liquid of density $0.7 \mathrm{~g} / \mathrm{cm}^3$, the angle remains same. If density of material of the sphere is $1.4 \mathrm{~g} / \mathrm{cm}^3$, the dielectric constant of the liquid is_____$\left(\tan 37^{\circ}=\frac{3}{4}\right)$.
A parallel plate air capacitor has a capacitance of $100\,\mu F$. The plates are at a distance $d$ apart. If a slab of thickness $t(t \le d)$and dielectric constant $5$ is introduced between the parallel plates, then the capacitance will be.......$\mu F$
In a medium of dielectric constant $K$, the electric field is $\vec E$ . If ${ \varepsilon _0}$ is permittivity of the free space, the electric displacement vector is