A parallel plate capacitor with width $4\,cm$, length $8\,cm$ and separation between the plates of $4\,mm$ is connected to a battery of $20\,V$. A dielectric slab of dielectric constant $5$ having length $1\,cm$, width $4\,cm$ and thickness $4\,mm$ is inserted between the plates of parallel plate capacitor. The electrostatic energy of this system will be......... $\in_{0}\,J$. (Where $\epsilon_{0}$ is the permittivity of free space)

  • [JEE MAIN 2022]
  • A

    $240$

  • B

    $241$

  • C

    $242$

  • D

    $243$

Similar Questions

A capacitor is charged by using a battery which is then disconnected. A dielectric slab is then slipped between the plates, which results in

A parallel plate capacitor is to be designed, using a dielectric of dielectric constant $5$, so as to have a dielectric strength of $10^9\;Vm^{-1}$ . If the voltage rating of the capacitor is $12\;kV$, the minimum area of each plate required to have a capacitance of $80\;pF$ is

  • [NEET 2017]

A parallel plate capacitor is connected to a battery. The quantities charge, voltage, electric field and energy associated with the capacitor are given by $Q_0, V_0, E_0$ and $U_0$ respectively. A dielectric slab is introduced between plates of capacitor but battery is still in connection. The corresponding quantities now given by $Q, V, E$ and $U$ related to previous ones are

A parallel plate capacitor has plates of area $A$ separated by distance $d$ between them. It is filled with a dielectric which has a dielectric constant that varies as $\mathrm{k}(\mathrm{x})=\mathrm{K}(1+\alpha \mathrm{x})$ where $\mathrm{x}$ is the distance measured from one of the plates. If $(\alpha \text {d)}<<1,$ the total capacitance of the system is best given by the expression 

  • [JEE MAIN 2020]

The outer sphere of a spherical air capacitor is earthed. For increasing its capacitance