A frictionless dielectric plate $S$ is kept on a frictionless table $T$. A charged parallel plate capacitance $C$ (of which the plates are frictionless) is kept near it. The plate $S$ is between the plates. When the plate $S$ is left between the plates
It will remain stationary on the table
It is pulled by the capacitor and will pass on the other end
It is pulled between the plates and will remain there
All the above statements are false
Two identical parallel plate capacitors, of capacitance $C$ each, have plates of area $A$, separated by a distance $d$. The space between the plates of the two capacitors, is filled with three dielectrics, of equal thickness and dielectric constants $K_1$ , $K_2$ and $K_3$ . The first capacitor is filled as shown in fig. $I$, and the second one is filled as shown in fig. $II$. If these two modified capacitors are charged by the same potential $V$, the ratio of the energy stored in the two, would be ( $E_1$ refers to capacitor $(I)$ and $E_2$ to capacitor $(II)$)
A parallel plate capacitor with a dielectric slab completely occupying the space between the plates is charged by a battery and then disconnected. The slab is pulled out with a constant speed. Which of the following curves represent qualitatively the variation of the capacitance $C$ of the system with time?
A parallel plate condenser has a capacitance $50\,\mu F$ in air and $110\,\mu F$ when immersed in an oil. The dielectric constant $'k'$ of the oil is
The space between the plates of a parallel plate capacitor is filled with a 'dielectric' whose 'dielectric constant' varies with distance as per the relation:
$K(x) = K_0 + \lambda x$ ( $\lambda =$ constant)
The capacitance $C,$ of the capacitor, would be related to its vacuum capacitance $C_0$ for the relation
A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage $(U )$ as $\varepsilon = \alpha U$ where $\alpha = 2{V^{ - 1}}$. A similar capacitor with no dielectric is charged to ${U_0} = 78\,V$. It is then connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.