An infinite line charge is at the axis of a cylinder of length $1 \,m$ and radius $7 \,cm$. If electric field at any point on the curved surface of cylinder is $250 \,NC ^{-1}$, then net electric flux through the cylinder is ............ $Nm ^2 C ^{-1}$
$1.1 \times 10^2$
$9.74 \times 10^{-6}$
$5.5 \times 10^6$
$2.5 \times 10^2$
Let the electrostatic field $E$ at distance $r$ from a point charge $q$ not be an inverse square but instead an inverse cubic, e.g. $E =k \cdot \frac{q}{r^{3}} \hat{ r }$, here $k$ is a constant.
Consider the following two statements:
$(I)$ Flux through a spherical surface enclosing the charge is $\phi=q_{\text {enclosed }} / \varepsilon_{0}$.
$(II)$ A charge placed inside uniformly charged shell will experience a force.
Which of the above statements are valid?
What is the direction of electric field intensity ?
In $1959$ Lyttleton and Bondi suggested that the expansion of the Universe could be explained if matter carried a net charge. Suppose that the Universe is made up of hydrogen atoms with a number density $N$, which is maintained a constant. Let the charge on the proton be :
${e_p}{\rm{ }} = - {\rm{ }}\left( {1{\rm{ }} + {\rm{ }}y} \right)e$ where $\mathrm{e}$ is the electronic charge.
$(a)$ Find the critical value of $y$ such that expansion may start.
$(b)$ Show that the velocity of expansion is proportional to the distance from the centre.
Draw electric field by negative charge.
Assertion : Four point charges $q_1,$ $q_2$, $q_3$ and $q_4$ are as shown in figure. The flux over the shown Gaussian surface depends only on charges $q_1$ and $q_2$.
Reason : Electric field at all points on Gaussian surface depends only on charges $q_1$ and $q_2$ .