$R$ ત્રિજ્યા ધરાવતા વાહક ગોળામાં વિધુતભાર સમાન રીતે વિતરિત કરેલ છે તો કેન્દ્ર $x$ અંતર ($x < R$) માટે વિધુતક્ષેત્ર કોના સમપ્રમાણમાં હોય ?
$\frac{1}{{{x^2}}}$
$\frac{1}{x}$
$x$
${x^2}$
$6\,m$ ત્રિજ્યા ધરાવતા ગોળાની કદ વિદ્યુતભાર ઘનતા $2\,\mu\,C / cm ^3$ છે. ગોળાની સપાટીમાંથી બહાર આવતી પ્રતિ એકમ પૃષ્ઠ ક્ષેત્રફળ દીઠ બળ રેખાઓની સંખ્યા $..........\times 10^{10} NC ^{-1}$ હશે.
[Given : Permittivity of vacuum $\left.\epsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1}- m ^{-2}\right]$
$R$ ત્રિજ્યાનો અવાહક ધન ગોળો સમાન રીતે વિદ્યુતભારીત થયેલો છે. તેના કેન્દ્રથી $r$ અંતરે આવેલ ગોળાને લીધે વિદ્યુતક્ષેત્રનું મૂલ્ય ........ છે.
$(1)\, r$ ના વધારા સાથે વધે છે $r < R \,$
$(2)\, r$ ના વધારા સાથે ઘટશે $0 < r <$ $\infty$
$(3)\, r$ ના વધારા સાથે ઘટશે $R < r < \infty \,$
$(4)\, r = R$ આગળ તે સતત છે.
આકૃતિમાં કોઈ વસ્તુ માટે વિદ્યુતક્ષેત્ર $E_{(r)}$ વિરુદ્ધ કોઈ બિંદુના તે વસ્તુના કેન્દ્રથી અંતર $(r)$ માટેનો આલેખ છે, તેથી......
આકૃતિમાં દર્શાવ્યા અનુસાર ત્રણ અનંત લંબાઈ ધરાવતી વિદ્યુતભારીત પાતળી શીટ (તકિત)ને ગોઠવવામાં આવે છે. $P$ બિંદુ આગળ વિદ્યુત ક્ષેત્રનું મૂલ્ય $\frac{x \sigma}{\epsilon_o}$ મળે છે. $x$ નું મૂલ્ય. . . . . .હશે. (દરેક રાશિ $SI$ એકમ પદ્ધતિમાં માપવામાં આવેલ છે.)
ધન વિદ્યુતભારીત અને અનંત લંબાઈ ધરાવતા સીધા ધાગા ( દોરી) ની રેખીય વિદ્યુતભાર ધનતા $\lambda \mathrm{Cm}^{-1}$ છે. એક ઈલેક્ટ્રોન તેની અક્ષ પરની લંબાઈની દિશામાં રહે તે રીતે વર્તુળાકાર પથપર ભ્રમણ કરે છે. ઈલેક્ટ્રોનની તાર થી વર્તુળાકર પથની ત્રિજ્યાં વિધેય તરીકે ઉર્જાનો ફેરફાર. . . . . . . દ્વારા સાચી રીતે રજૂ કરી શાકાય