एक खोखले विलगित चालक गोले को $+10\,\mu \,C$ का धन आवेश दिया जाता है। यदि गोले की त्रिज्या $2$ मीटर हो, तो उसके केन्द्र पर विधुत क्षेत्र ........$\mu \,C{m^{ - 2}}$ होगा:

  • [AIPMT 1998]
  • A

    $0$

  • B

    $5$

  • C

    $20$

  • D

    $8$

Similar Questions

दो $R$ व $2 R$ त्रिज्या वाले अचालक ठोस गोलको को जिन पर क्रमशः $\rho_1$ तथा $\rho_2$ एकसमान आयतन आवेश घनत्व है, एक दूसरे से स्पर्श करते हुए रखा गया है। दोंनो गोलकों के केन्द्रों से गुजरती हुई रेखा खींची जाती है। इस रेखा पर छोटे गोलक के केन्द्र से $2 R$ दूरी पर नेट विद्युत क्षेत्र शून्य है। तब अनुपात $\frac{\rho_1}{\rho_2}$ का मान हो सकता है:

  • [IIT 2013]

$(a)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र के अभिलंब घटक में असांतत्य होता है, जिसे

$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{\rho}}$

द्वारा व्यक्त किया जाता है। जहाँ $\hat{ n }$ एक बिदु पर पृष्ठ के अभिलंब एकांक सदिश है तथा $\sigma$ उस बिंदु पर पृष्ठ आवेश घनत्व है ( $\hat{ n }$ की दिशा पार्श्व $1$ से पार्श्व $2$ की ओर है।) अत: दर्शाइए कि चालक के ठीक बाहर विध्यूत क्षेत्र $\sigma \hat{ n } / \varepsilon_{0}$ है।

$(b)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र का स्पर्शीय घटक संतत है।

$6\,m$ त्रिज्या वाले एक गोले का आयतन आवेश घनत्व $2\,\mu C cm ^{-3}$ है। गोले के पृष्ठ से बाहर आ रही बल रेखाओं की प्रति इकाई पृष्ठ क्षेत्रफल संख्या $........\times 10^{10}\,NC ^{-1}$ होगी। [दिया है : निर्वात का परावैद्युतांक $\left.\epsilon_0=8.85 \times 10^{-12} C ^2 N ^{-1}- m ^{-2}\right]$

  • [JEE MAIN 2022]

एक पतले अनन्त आवेशित तल एवं एक अनन्त रेखीय आवेश के आवेश घनत्व क्रमशः $+\sigma$ एवं $+\lambda$ हैं, जो कि एक-दूसरे से $5 \mathrm{~m}$ की दूरी पर एक-दूसरे के समानान्तर रखे हैं। रेखीय आवेश से आवेशित तल की तरफ क्रमशः $\frac{3}{\pi} \mathrm{m}$ एवं $\frac{4}{\pi} \mathrm{m}$ की लम्बवत दूरियों पर बिन्दू ' $P$ ' एवं ' $Q$ ' हैं। ' $E_P$ ' एवं ' $E_Q$ ' क्रमशः बिन्दु ' $P$ ' एवं ' $Q$ ' पर परिणामी विद्युत क्षेत्र की तीव्रताओं के परिमाण हैं। यदि $2|\sigma|=|\lambda|$ के लिए $\frac{E_p}{E_Q}=\frac{4}{a}$ है तो $a$ का मान_________है।

  • [JEE MAIN 2023]

एक अनन्त लम्बा रैखिक आवेश $2\,cm$ की दूरी पर $7.182 \times {10^8}\,N/C$ का विद्युत क्षेत्र उत्पन कर रहा है। रेखीय आवेश घनत्व होगा