एक खोखले विलगित चालक गोले को $+10\,\mu \,C$ का धन आवेश दिया जाता है। यदि गोले की त्रिज्या $2$ मीटर हो, तो उसके केन्द्र पर विधुत क्षेत्र ........$\mu \,C{m^{ - 2}}$ होगा:
$0$
$5$
$20$
$8$
माना $\sigma$ चित्रानुसार दो अनन्त पतली समतल शीटो का एकसमान पृष्ठीय आवेश घनत्व है। तब तीन विभिन्न प्रभागो में विद्युत क्षेत्र के मान $E_{\mathrm{I}}, E_{\mathrm{II}}$ व $E_{\mathrm{II}}$ होगें
दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।
$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र
त्रिज्या $R$ और कुल आवेश $Q$ वाले एक ठोस गोले पर आवेश घनत्व वितरण $P(r)=\frac{Q}{\pi R^{4}} r,$ गोले के केन्द्र से $r_{1}$ दूरी पर गोले के अन्दर एक बिन्दु $'p'$ पर विघुत क्षेत्र का परिमाण है :
गाउस नियम का उपयोग किए बिना किसी एकसमान रैखिक आवेश घनत्व $\lambda$ के लंबे पतले तार के कारण विध्युत क्षेत्र के लिए सूत्र प्राप्त कीजिए
एक पतले अनन्त आवेशित तल एवं एक अनन्त रेखीय आवेश के आवेश घनत्व क्रमशः $+\sigma$ एवं $+\lambda$ हैं, जो कि एक-दूसरे से $5 \mathrm{~m}$ की दूरी पर एक-दूसरे के समानान्तर रखे हैं। रेखीय आवेश से आवेशित तल की तरफ क्रमशः $\frac{3}{\pi} \mathrm{m}$ एवं $\frac{4}{\pi} \mathrm{m}$ की लम्बवत दूरियों पर बिन्दू ' $P$ ' एवं ' $Q$ ' हैं। ' $E_P$ ' एवं ' $E_Q$ ' क्रमशः बिन्दु ' $P$ ' एवं ' $Q$ ' पर परिणामी विद्युत क्षेत्र की तीव्रताओं के परिमाण हैं। यदि $2|\sigma|=|\lambda|$ के लिए $\frac{E_p}{E_Q}=\frac{4}{a}$ है तो $a$ का मान_________है।