A hollow insulated conducting sphere is given a positive charge of $10\,\mu \,C$. ........$\mu \,C{m^{ - 2}}$ will be the electric field at the centre of the sphere if its radius is $2$ meters
$0$
$5$
$20$
$8$
A spherical conductor of radius $10\, cm$ has a charge of $3.2 \times 10^{-7} \,C$ distributed uniformly. What is the magnitude of electric field at a point $15 \,cm$ from the centre of the sphere?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
Two infinitely long parallel wires having linear charge densities ${\lambda _1}$ and ${\lambda _2}$ respectively are placed at a distance of $R$ metres. The force per unit length on either wire will be $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$
A spherically symmetric charge distribution is characterised by a charge density having the following variations
$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$ for $r < R$
$\rho (r)\,=\,0$ for $r\, \ge \,R$
Where $r$ is the distance from the centre of the charge distribution $\rho _0$ is a constant. The electric field at an internal point $(r < R)$ is
An infinite plane sheet of charge having uniform surface charge density $+\sigma_5 \mathrm{C} / \mathrm{m}^2$ is placed on $\mathrm{x}-\mathrm{y}$ plane. Another infinitely long line charge having uniform linear charge density $+\lambda_e \mathrm{C} / \mathrm{m}$ is placed at $z=4 \mathrm{~m}$ plane and parallel to $y$-axis. If the magnitude values $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ then at point $(0,0,2)$, the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi \sqrt{\mathrm{n}}: 1$. The value of $n$ is
Two parallel infinite line charges with linear charge densities $+\lambda\; \mathrm{C} / \mathrm{m}$ and $-\lambda\; \mathrm{C} / \mathrm{m}$ are placed at a distance of $2 \mathrm{R}$ in free space. What is the electric field mid-way between the two line charges?