कोई लडाकू जहाज $1.5\, km$ की ऊंचाई पर $720\, km / h$ की चाल से क्षैतिज दिशा में उड़ रहा है और किसी वायुयान भेदी तोप के ठीक ऊपर से गुजरता है । ऊध्वाधर से तोप की नाल का क्या कोण हो जिससे $600\, m\, s ^{-1}$ की चाल से दागा गया गोला वायुमान पर वार कर सके । वायुयान के चालक को किस न्यूनतम ऊंचाई पर जहाज को उड़ाना चाहिए जिससे गोला लगने से बच सके। $\left(g=10 m s ^{-2}\right)$
Height of the fighter plane $=1.5 \,km =1500 \,m$
Speed of the fighter plane, $v=720 \,km / h =200 \,m / s$
Let $\theta$ be the angle with the vertical so that the shell hits the plane. The situation is shown in the given figure.
Muzzle velocity of the gun, $u=600 \,m / s$ Time taken by the shell to hit the plane $=t$ Horizontal distance travelled by the shell $=u_{x} t$ Distance travelled by the plane $=v t$ The shell hits the plane. Hence, these two distances must be equal.
$u_{ x } t=v t$
$u \sin \theta=v$
$\sin \theta=\frac{v}{u}$
$=\frac{200}{600}=\frac{1}{3}=0.33$
$\theta=\sin ^{-1}(0.33)$
$=19.5^o$
In order to avoid being hit by the shell, the pilot must fly the plane at an altitude $(H)$ higher than the maximum height achieved by the shell.
$\therefore H=\frac{u^{2} \sin ^{2}(90-\theta)}{2 g }$
$=\frac{(600)^{2} \cos ^{2} \theta}{2 g }$
$=\frac{360000 \times \cos ^{2} 19.5}{2 \times 10}$
$=18000 \times(0.943)^{2}$
$=16006.482 \,m$
$\approx 16\; km$
क्षैतिज से $30^{\circ}$ एवं $60^{\circ}$ के कोणों पर दो प्रक्षेप्य समान चालों से प्रक्षेपित किए जाते हैं। क्रमशः प्रक्षेप्यों द्वारा प्राप्त अधिकतम ऊँचाइयों का अनुपात है:
एक प्रक्षेप्य के लिए, अधिकतम ऊँचाई एवं उड्डयन काल के वर्ग का अनुपात है ($g = 10 ms^{-2}$)
एक गेंद जिसकी गतिज ऊर्जा E है, क्षैतिज से $45°$ पर फेंकी जाती है। इसकी उड़ान के दौरान उच्चतम बिन्दु पर गतिज ऊर्जा होगी
मूल बिन्दु से $t=0$ पर प्रक्षेपित एक प्रक्षेप की स्थिति $t =2 \; s$ पर $\overrightarrow{ r }=(40 \hat{i}+50 \hat{j})\; m$ से दी जाती है। यदि प्रक्षेप क्षैतिज से $\theta$ कोण पर प्रक्षेपित किया गया था, तब $\theta$ है ( $g =10\; ms ^{-2}$ लें).
एक गोली बन्दूक से $500 $ मी/सैकण्ड के वेग से $15^°$ प्रक्षेपण कोण पर छोड़ी जाती है। यदि $g = 10$ मी/सैकण्ड$^2$ हो तो क्षैतिज परास है