એક પાસાને ઉછાળવામાં આવે છે. જો ઘટના $A$ પાસા પરની સંખ્યા ત્રણ કરતાં મોટી દર્શાવે અને ઘટના $B$ એ પાસા પરની સંખ્યા પાંચ કરતાં નાની દર્શાવે છે.તો $P\left( {A \cup B} \right)$ મેળવો.
$\frac{3}{5}$
$0$
$1$
$\frac{2}{5}$
જો $A$ અને $B$ બે ઘટના છે કે જેથી $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ અને $P(\bar A) = \frac{1}{4},$ કે જ્યાં $\bar A$ એ ઘટના $A$ ની પૂરક ઘટના છે તો ઘટનાઓ $A$ અને $B$ એ . . . થાય .
જો $A, B, C$ એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે $P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$
જો $A$ અને $B$ એ ઘટના છે કે જેથી $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ તો $P(\bar A \cap B)$ મેળવો.
જો $A$ અને $B$ નિરપેક્ષ ઘટનાઓ હોય અને $P(A)=\frac{3}{5}$ અને$P(B)=\frac{1}{5}$ હોય, તો $P(A \cap B)$ શોધો.
નિદેશાવકાશમાં કોઇ બે ઘટનાઓ $A$ અને $B$ માટે,