A die is thrown. Let $A$ be the event that the number obtained is greater than $3.$ Let $B$ be the event that the number obtained is less than $5.$ Then $P\left( {A \cup B} \right)$ is
$\frac{3}{5}$
$0$
$1$
$\frac{2}{5}$
Let $A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur together is $1/6$ and the probability that neither of them occurs is $1/3$. The probability of occurrence of $A$ is
If $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ and the events $A$ and $B$ are independent, then $x =$
If odds against solving a question by three students are $2 : 1 , 5:2$ and $5:3$ respectively, then probability that the question is solved only by one student is
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?
$E:$ ' the card drawn is a king and queen '
$F:$ ' the card drawn is a queen or jack '
For two given events $A$ and $B$, $P\,(A \cap B) = $