A cube of a metal is given a positive charge $Q$. For the above system, which of the following statements is true
Electric potential at the surface of the cube is zero
Electric potential within the cube is zero
Electric field is normal to the surface of the cube
Electric field varies within the cube
A positive charge $q$ is kept at the center of a thick shell of inner radius $R_1$ and outer radius $R_2$ which is made up of conducting material. If $\phi_1$ is flux through closed gaussian surface $S_1$ whose radius is just less than $R_1$ and $\phi_2$ is flux through closed gaussian surface $S_2$ whose radius is just greater than $R_1$ then:-
An infinite, uniformly charged sheet with surface charge density $\sigma$ cuts through a spherical Gaussian surface of radius $R$ at a distance $x$ from its center, as shown in the figure. The electric flux $\Phi $ through the Gaussian surface is
An electric field is given by $(6 \hat{i}+5 \hat{j}+3 \hat{k}) \ N / C$.
The electric flux through a surface area $30 \hat{\mathrm{i}}\; m^2$ lying in $YZ-$plane (in SI unit) is
In a region of space the electric field is given by $\vec E = 8\hat i + 4\hat j+ 3\hat k$. The electric flux through a surface of area $100\, units$ in the $x-y$ plane is....$units$
A point charge of $+\,12 \,\mu C$ is at a distance $6 \,cm$ vertically above the centre of a square of side $12\, cm$ as shown in figure. The magnitude of the electric flux through the square will be ....... $\times 10^{3} \,Nm ^{2} / C$