એક કાર સ્થિર સ્થિતિમાંથી ગતિ શરૂ કરીને પ્રથમ $S$ અંતર $f$ પ્રવેગથી કાપે છે, ત્યારબાદ $t$ સમય સુધી અચળ ઝડપે ગતિ કરે છે. ત્યારબાદ $\frac{f}{2}$ ના પ્રતિપ્રવેગથી ગતિ કરી સ્થિર થાય છે. જો કુલ અંતર $15S$ હોય, તો ....
$S = \frac{1}{2}f{t^2}$
$S = \frac{1}{4}f{t^2}$
$S = \frac{1}{{72}}f{t^2}$
$S = \frac{1}{6}f{t^2}$
પ્રવેગ, સરેરાશ પ્રવેગ અને તત્કાલીન પ્રવેગની વ્યાખ્યા લખો.
$x-$ અક્ષની દિશામાં એક કણને $v_{0}$ જેટલા વેગથી પ્રક્ષિપ્ત કરવામાં આવે છે. કણ પર અવમંદન બળ લાગે છે કે જે ઉદગમથી અંતરનાં વર્ગના સમપ્રમાણમાં, એટલે કે $ma =-\alpha x ^{2}$ છે. અંતર કે જ્યાં કણ અટકશે તે .......
એક પદાર્થ $x=0$ સ્થાને સ્થિર સ્થિતિમાં છે. તે $t=0$ સમયે ધન $x$ દિશામાં અચળ પ્રવેગી ગતિ શરૂ કરે છે. આ જ સમયે બીજો એક પદાર્થ પણ $x =0$ સ્થાનેથી ધન $x$ દિશામાં અચળ ઝડપથી ગતિ કરે છે. $t$ સમય પછી પ્રથમ પદાર્થનું સ્થાન $x _{1}(t)$ વડે તથા સમાન સમય અંતરાલ પછી બીજા પદાર્થનું સ્થાન $x _{2}(t)$ વડે અપાય છે. નીચેનામાંથી ક્યો આલેખ $\left( x _{1}- x _{2}\right)$ ને સમય $t$ ના વિધેય તરીકે સાચી રીતે દર્શાવે છે?
જે વેગ-સમય આલેખનો આકાર $AMB$ હોય, તો તેને અનુરૂપ પ્રવેગ-સમય આલેખનો આકાર કેવો હશે?