A body of mass ${m_1}$ moving with uniform velocity of $40 \,m/s$ collides with another mass ${m_2}$ at rest and then the two together begin to move with uniform velocity of $30\, m/s$. The ratio of their masses $\frac{{{m_1}}}{{{m_2}}}$ is

  • A

    $0.75$

  • B

    $1.33$

  • C

    $3$

  • D

    $4$

Similar Questions

A uniform chain of length $L$ and mass $M$ is lying on a smooth table and one third of its length is hanging vertically down over the edge of the table. If $g$ is acceleration due to gravity, work required to pull the hanging part on to the table is

A frictionless track $ABCDE$ ends in a circular loop of radius $R$ .A body slides down the track from point $A$ which is at a height $h = 5\, cm$. Maximum value of $R$ for the body to successfully complete the loop is .................. $\mathrm{cm}$

The potential energy of a particle oscillating along $x-$ axis is given as $U =20+ (x - 2)^2$ where $U$ is in $joules$ and $x$ in $meters$ . Total mechanical energy of the particle is $36 \,J$. Maximum kinetic energy of the particle is ............... $\mathrm{J}$

Consider two carts, of masses $m$ and $2m$ , at rest on an air track. If you push both the carts for $3\,s$ exerting equal force on each, the kinetic energy of the light cart is

Body $A$ of mass $4m$ moving with speed $u$ collides with another body $B$ of mass $2 m$ at rest the collision is head on and elastic in nature. After the collision the fraction of energy lost by colliding body $A$ is