Consider two carts, of masses $m$ and $2m$ , at rest on an air track. If you push both the carts for $3\,s$ exerting equal force on each, the kinetic energy of the light cart is

  • A

    larger than the kinetic energy of the heavy cart

  • B

    equal to the kinetic energy of the heavy cart

  • C

    smaller than the kinetic energy of the heavy cart

  • D

    Information is not sufficient to decide

Similar Questions

Curve between net forcevs time is shown Initially particle is at rest .. Which of the following best represents the resulting velocity-time graph of the particle ?

Two blocks $A$ and $B$ of masses $1\, kg$ and $2\, kg$ are connected together by a  spring and are resting on a horizontal surface. The blocks are pulled apart so as to strech  the spring and then released. The ratio of $K.E.s$ of both the blocks is

A curved surface is shown in figure. The portion $BCD$ is free of friction. There are three spherical balls of identical radii and masses. Balls are released from rest one by one from $A$ which is at a slightly greater height than $C$.

With the surface $AB$, ball $1$ has large enough friction to cause rolling down without slipping; ball $2$ has a small friction and ball $3$ has a negligible friction.

$(a)$ For which balls is total mechanical energy conserved ?

$(b)$ Which ball $(s)$ can reach $D$ ?

$(c)$ For ball which do not reach $D$, which of the balls can reach back $A$ ?

Underline the correct alternative :

$(a)$ When a conservative force does positive work on a body, the potential energy of the body increases/decreases/remains unaltered.

$(b)$ Work done by a body against friction always results in a loss of its kinetic/potential energy.

$(c)$ The rate of change of total momentum of a many-particle system is proportional to the external force/sum of the internal forces on the system.

$(d)$ In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum/total energy of the system of two bodies.

The mass of the bob of a simple pendulum of length $L$ is $m$. If the bob is left from its horizontal position then the speed of the bob and the tension in the thread in the lowest position of the bob will be respectively