एक वस्तु पूर्व की ओर $20$ किमी/घण्टा के वेग से चलती है तथा फिर उत्तर की ओर $15$ किमी/घण्टा से चलती है परिणामी वेग .........$km/h$ होगा
$5$
$15$
$20$
$25$
दिये गये दो सदिशों के परिणामी के अधिकतम तथा न्यूनतम परिमाण क्रमश: $17$ तथा $7$ इकाई हैं। यदि ये दोनों सदिश परस्पर लम्बवत् हैं। तब इनके परिणामी का परिमाण होगा
अभिकथन $A$ : यदि $A , B , C , D$ अर्ध वत्त (केन्द्र $'O'$) पर स्थित चार बिन्दु इस प्राकार है कि
$|\overrightarrow{ AB }|=|\overrightarrow{ BC }|=|\overrightarrow{ CD }|$ तो
$\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }=4 \overrightarrow{ AO }+\overrightarrow{ OB }+\overrightarrow{ OC }$
कारण $R$ : सदिशों के बहुभुज नियम के अनुसार
उपरोक्त कथनानुसार, सबसे उपयुक्त विकल्प को दिए गए विकल्पों में से चुनिए।
निम्न में से कौन से सम्बन्ध दो इकाई सदिशों $\hat{ A }$ व $\hat{ B }$ के लिए सत्य है, यदि $\hat{ A }$ व $\hat{ B }$ परस्पर $\theta$ कोण बनाते है ?
दिया है $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $ तथा $\mathop C\limits^ \to $, $\mathop A\limits^ \to $ के लम्बवत है इसके अतिरिक्त यदि $|\mathop A\limits^ \to |\, = \,|\mathop C\limits^ \to |,$तो $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है