A ball is projected at an angle $45^o$ with horizontal. It passes through a wall of height $h$  at horizontal distance $d_1$ from the point of projection and strikes the ground at a  horizontal distance $(d_1 + d_2)$ from the point of projection, then $h$ is

  • A

    $h = \frac{{2{d_1}{d_2}}}{{{d_1} + {d_2}}}$

  • B

    $h = \frac{{{d_1}{d_2}}}{{{d_1} + {d_2}}}$

  • C

    $h = \frac{{\sqrt 2 {d_1}{d_2}}}{{{d_1} + {d_2}}}$

  • D

    $h = \frac{{{d_1}{d_2}}}{{2\left( {{d_1} + {d_2}} \right)}}$

Similar Questions

Range of a bob of mass $1\, kg$ is $80\,m$ while it attains maximum height $20\,m$. Its  change in momentum in complete motion ............ $N-s$

Projectiles $A$ and $B$ are thrown at angles of $45^{\circ}$ and $60^{\circ}$ with vertical respectively from top of a $400 \mathrm{~m}$ high tower. If their ranges and times of flight are same, the ratio of their speeds of projection $v_A: v_B$ is :

  • [JEE MAIN 2024]

A boy playing on the roof of a $10\, m$ high building throws a ball with a speed of $10\,m/s$ at an angle of $30^o$ with the horizontal. How far from the throwing point will the ball be at the height of $10\, m$ from the ground ?  $\left[ {g = 10\,m/{s^2},\sin \,{{30}^o} = \frac{1}{2},\cos \,{{30}^o} = \frac{{\sqrt 3 }}{2}} \right]$

The initial speed of a projectile fired from ground is $u$. At the highest point during its motion, the speed of projectile is $\frac{\sqrt{3}}{2} u$. The time of flight of the projectile is:

  • [JEE MAIN 2023]

For an object projected from ground with speed $u$ horizontal range is two times the maximum height attained by it. The horizontal range of object is ..........