A boy playing on the roof of a $10\, m$ high building throws a ball with a speed of $10\,m/s$ at an angle of $30^o$ with the horizontal. How far from the throwing point will the ball be at the height of $10\, m$ from the ground ? $\left[ {g = 10\,m/{s^2},\sin \,{{30}^o} = \frac{1}{2},\cos \,{{30}^o} = \frac{{\sqrt 3 }}{2}} \right]$
$5\sqrt 5 $
$6$
$3$
$5\sqrt 3 $
In a circus, a performer throws an apple towards a hoop held at $45 \,m$ height by another performer standing on a high platform (see figure). The thrower aims for the hoop and throws the apple with a speed of $24 \,m / s$. At the exact moment that the thrower releases the apple, the other performer drops the hoop. The hoop falls straight down. At ............ $m$ height above the ground does the apple go through the hoop?
A particle of mass $m$ is at rest at the origin at time $t = 0$. It is subjected to a force $F(t) = F_0e^{-bt}$ in the $x$ direction. Its speed $v (t)$ is depicted by which of the following curves?
A ball thrown by a boy is caught by another after $2\ sec$. some distance away in the same level. If the angle of projection is $30^o $, the velocity of projection is ......... $m/s$
A stone is thrown at an angle $\theta $ to the horizontal reaches a maximum height $H$. Then the time of flight of stone will be