આકૃતિમાં બતાવ્યા મુજબ $1\,kg$ દળ ને $600\,N / m$ બળ અચળાંક ધરાવતી સ્પ્રિંગ સાથે જોડેલ છે. અને તે સમક્ષિતિજ સપાટી પર રાખેલ છે અને બીજો છેડો દિવાલ સાથે જોડેલ છે. $0.5\,kg$ નું બીજુ દળ પ્રથમ દળ ની સામે $3\,m / s$ ના વેગથી ગતિ કરે છે. જો બંને દળ સંપૂર્ણ બિન સ્થિતિસ્થાપક અથડામણ કરે, તો તેનો કંપનવિસ્તાર અને સમયગાળો શોધો. (સંયોજન થયેલા દળનો)
$5\,cm , \frac{\pi}{10}\, s$
$5\, cm , \frac{\pi}{5}\,s$
$4\,cm , \frac{2 \pi}{5}\,s$
$4\,cm , \pi / 3\,s$
$M$ અને $N$ સમાન દળના પદાર્થને અનુક્રમે $k_1$ અને $k_2$ બળ અચળાંક ધરાવતી દળરહિત સ્પ્રિંગ પર લટકાવેલ છે. જો દોલનો દરમિયાન તેમના મહત્તમ વેગ સમાન હોય, તો કંપવિસ્તારનો ગુણોત્તર કેટલો થાય?
આકૃતિમાં દર્શાવેલ $M$ દળના એક પદાર્થની સરળ આવર્ત ગતિનો આવર્તકાળ $\pi \sqrt{\frac{\alpha \mathrm{M}}{5 \mathrm{~K}}}$ છે જયાં $\alpha=\ldots \ldots .$.
$x=0$ ની આસપાસ $0.01 \;kg$ દળ ધરાવતો પદાર્થ નીચે દર્શાવેલ આકૃતિ મુજબ ગતિ કરે છે. આ સરળ આવર્ત ગતિનો આવર્તકાળ શોધો.
આકૃતિ $(A)$ માં ‘$2\,m$’ દળને ' $m$ ' દળ ઉપર જડવામાં આવ્યો છે. $m$ દળ $k$ જેટલો સ્પ્રિંગ અચળાંક ઘરાવતી સ્પ્રિંગો સાથે જોડવામાં આવેલ છે. આકૃતિ $(B)$ માં ‘ $m$ ' દળને ' $k$ ' અને ‘ $2 k$ ' સ્ત્રિંગ અચળાંકો ઘરાવતી બે સ્પ્રિંગો સાથે જ્રેડવામાં આવેલ છે. જે $(A)$ માં દળ ' $m$ ' ને અને $(B)$ માં દળ ' $m$ ' ને ' $x$ ' અંતરે ખસેડવામાં આવે તો, $(A)$ અને $(B)$ ને અનુરૂપ આવર્તકાળ $T _1$ અને $T _2........$ સમીકરણને અનુસરશે.
આકૃતિમાં દર્શવ્યા પ્રમાણે બ્લોક $P$ અને $Q$ વચ્ચે ઘર્ષણ છે. પરંતુ $Q$ અને તળિયાની સપાટી વચ્યે ઘર્ષણ લાગતું નથી. સ્પ્રિંગની સામાન્ય સ્થિતિમાં બ્લોક $Q, P$ તે $x=0$ સ્થિતિમાં છે. હવે બ્લોક $Q$ જમણી તરફ થોડો ખેંચીને છોડવામાં આવે છે. આ સ્પ્રિંગ બ્લોક પ્રણાલી $A$ જેટલા કંપવિસ્તારથી દોલનો કરે છે. જો આ સ્થિતિ $P$ બ્લોક $Q$ પરથી સરકવા લાગે તો ક્યા સ્થાને સરકીને નીચે પડશે?