આકૃતિ $(A)$ માં ‘$2\,m$’ દળને ' $m$ ' દળ ઉપર જડવામાં આવ્યો છે. $m$ દળ $k$ જેટલો સ્પ્રિંગ અચળાંક ઘરાવતી સ્પ્રિંગો સાથે જોડવામાં આવેલ છે. આકૃતિ $(B)$ માં ‘ $m$ ' દળને ' $k$ ' અને ‘ $2 k$ ' સ્ત્રિંગ અચળાંકો ઘરાવતી બે સ્પ્રિંગો સાથે જ્રેડવામાં આવેલ છે. જે $(A)$ માં દળ ' $m$ ' ને અને $(B)$ માં દળ ' $m$ ' ને ' $x$ ' અંતરે ખસેડવામાં આવે તો, $(A)$ અને $(B)$ ને અનુરૂપ આવર્તકાળ $T _1$ અને $T _2........$ સમીકરણને અનુસરશે.
$\frac{T_{1}}{T_{2}}=\frac{3}{\sqrt{2}}$
$\frac{ T _{1}}{ T _{2}}=\sqrt{\frac{3}{2}}$
$\frac{ T _{1}}{ T _{2}}=\sqrt{\frac{2}{3}}$
$\frac{ T _{1}}{ T _{2}}=\frac{\sqrt{2}}{3}$
એક સરખા સ્પ્રિંગ અચળાંક $k$ ધરાવતી ત્રણ સ્પ્રિંગ સાથે $m$ જેટલું દળ આકૃતિ મુજબ લટકાવેલ છે. જો દળને થોડુંક નીચે તરફ ખેંચીને છોડી દેવામાં આવે તો થતા દોલનોનો આવર્તકાળ કેટલો હશે ?
બે એક સરખી સ્પ્રિંગને બળ અચળાંક $73.5 \,Nm ^{-1}$ જેટલો સરખો જ છે. આકૃતિ $1$ , આકૃતિ $2$ અને આકૃતિ $3$ દ્વારા દર્શાવેલ સ્થિતિમાં તેની લંબાઈમાં વધારો કેટલો થશે ? $\left(g=9.8 \,ms ^{-2}\right)$
સ્પ્રિંગના લીધે થતાં દોલનો સ.આ.દોલનો છે તેમ બતાવો અને આવર્તકાળનું સૂત્ર મેળવો.
સ્પ્રિંગ બેલેન્સમાં જે સ્કેલ છે તે $0$ થી $50\, kg$ સુધીનો છે. સ્કેલની લંબાઈ $20\, cm$ છે. આ કાંટા પર લટકાવવામાં આવેલ એક પદાર્થને સ્થાનાંતરિત કરીને મુક્ત કરવામાં આવે છે, તો તે $0.6\, s$ ના આવર્તકાળ સાથે દોલિત થાય છે. આ પદાર્થનું વજન કેટલું હશે ?
પુનઃસ્થાપક બળ એટલે શું?