$_{90}^{232}Th$ an isotope of thorium decays in ten stages emitting six $\alpha$-particles and four $\beta$-particles in all. The end product of the decay is
$_{82}^{206}Pb$
$_{82}^{209}Pb$
$_{82}^{208}Pb$
$_{83}^{209}Br$
${ }_{92}^{235} U$ atom disintegrates to ${ }_{82}^{207} Pb$ with a half-life of $10^9 yr$. In the process, it emits $7 \alpha$ particles and $n \beta^{-}$particles. Here, $n$ is
A nuclear reaction is given by
${}_Z{X^A} \to {}_{Z + 1}{Y^A} + {}_{ - 1}{e^0} + \bar v$ , represents
${ }_{82}^{290} X \xrightarrow{\alpha} Y \xrightarrow{e^{+}} Z \xrightarrow{\beta^{-}} P \xrightarrow{e^{-}} Q$
In the nuclear emission stated above, the mass number and atomic number of the product $Q$ respectively, are
What happens to the mass number and atomic number of an element when it emits $\gamma$-radiation?
When a uranium isotope ${ }_{92}^{235} U$ is bombarded with a neutron, it generates ${ }_{36}^{89} Kr$, three neutrons and: