જો બહુપદી સમીકરણ  $a_nx^n + a_{n-1}x^{n-1} + … + a_2x^2 + a_1x + a_0 = 0$  જ્યાં $n$  ધન પૂર્ણાક સંખ્યા, ના બે ભિન્ન બીજ $ \alpha$  અને $\beta $  હોય, તો $ \alpha  $ અને $\beta$   વચ્ચે સમીકરણ $ na_nx^{n-1} + (n - 1)a_{n-1 }x^{n-2} + …. a_1 = 0 $ એ  $ (\alpha , \beta )$ અંતરાલમાં કેટલા બીજ હોય ?

  • A

    એક ચોક્કસ બીજ

  • B

    વધુમાં વધુ એક બીજ

  • C

    ઓછામાં ઓછું એક બીજ

  • D

    બીજ ન હોય.

Similar Questions

ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી

$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.

નીચેના બે વિધાનો ધ્યાને લો.

$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$

$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,

  • [JEE MAIN 2023]

મધ્યકમાન પ્રમેય પરથી , $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, તો . . . .

$f(x) = | x - 2 | + | x - 5 |, x \in R$ વિધેય ધ્યાનમાં લો.

વિધાન $- 1 : f'(4) = 0.$

વિધાન $- 2 : [2, 5] $ માં $f $ સતત છે, $(2, 5)$  માં $f $ વિકલનીય છે અને $f(2) = f(5).$

જો $f(x) = \cos x,0 \le x \le {\pi \over 2}$, તો વાસ્તવિક સંખ્યા $‘c’$ મધ્યકમાન પ્રમેયનો ઉપયોગ કરી ને મેળવો.

જો $y = f (x)$ અને  $y = g (x)$ એ $[0,2]$ પર બે વિકલનીય વિધેય છે કે જેથી $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ અને $g(2) = 2$ થાય. જો ઓછામાં ઓછો એક $c \in \left( {0,2} \right)$ મળે કે જેથી $f'(c)=kg'(c)$ થાય તો $k$ મેળવો.